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In this online appendix to “Choice-Theoretic Foundations of the Divisive Normalization
Model”, we show an equivalence result between: (1) the normalization model with a more
general functional form for the divisive factor; (2) the information-processing model without
the MCC; and (3) Axioms 1 and 2. This equivalence was referred to several times in the
text of the main paper.

Definition 1. A random choice rule ρ has a generalized divisive normalization rep-
resentation (GDNR) if there exists v : X → R++ and F : A → R++ such that for any
A ∈ A and x ∈ A

ρ (x,A) = Pr
(
x ∈ arg max

y∈A

v (y)
F (A) + εy

)
,

where εy is distributed i.i.d. Gumbel (0,1).

Theorem 1. For any random choice rule ρ the following are equivalent:

1. ρ has a GDNR,

2. ρ has an information-processing representation,

3. ρ obeys Axioms 1 and 2.

We will show that all three parts of Theorem 1 are equivalent to the following statement:
there exists v : X → R++ and F : A → R++ such that

ρ (x,A) =
exp

(
v(x)
F (A)

)
∑

y∈A exp
(

v(y)
F (A)

) for all A ∈ A and x ∈ A. (1)

As a shorthand, we will refer to this statement as Equation (1) holding. The proof of the
equivalence between Equation (1) and the GDNR follows closely the proof in Appendix A.1

1



from the main paper, with F (A) replacing γ/ (σ + v (A)). We now prove the equivalence to
the other two parts.

Equivalence with the Information-Processing Model

First suppose ρ obeys Equation (1) using (v, F ). Define an information-processing model
using the same v and setting

CA (c) = F (A) c

for all c ∈ R and A ∈ A. Fix an A ∈ A. On A, the information-processing model defines
a maximization problem with a continuous objective function and a compact constraint set.
Hence, there exists a solution p ∈ ∆A. For each A ∈ A, p must obey the Karush-Kuhn-
Tucker condition that there exists a λ such that for each x ∈ A

v (x)− C ′A (∆H (p)) (ln (p (x)) + 1) + λ+ µx = 0, (2)

for some µx, with the complimentary slackness condition that µx > 0⇒ p (x) = 0. Applying
our definition of CA gives

v (x)− F (A) (ln (p (x)) + 1) + λ+ µx = 0.

We know that p (x) > 0 since otherwise the left-hand side is infinite and this equation can
never hold. Thus µx = 0 by complimentary slackness. It then follows that for any x, y ∈ A

p (x)
p (y) = exp

(
v (x)− v (y)

F (A)

)
.

And using the fact that probabilities sum to 1, we can derive

p (x) =
exp

(
v(x)
F (A)

)
∑

y∈A exp
(

v(y)
F (A)

)
for all x ∈ A. It follows that p = ρ (·, A). Repeating this argument for all choice sets, it
follows that ρ has an information-processing representation.

Now suppose ρ has an information-processing representation
(
v, {CA}A∈A

)
. For each

A ∈ A, define
F (A) = C ′A (∆H (ρ (·, A))) .
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We can then write the Karush-Kuhn-Tucker conditions that ρ must obey as

v (x)− F (A) (ln (ρ (x,A)) + 1) + λ+ µx = 0.

We know that µx = 0 since ρ (x,A) > 0 by assumption. We can now use the same steps as
in the proof of the other direction to establish that ρ obeys Equation (1).

Equivalence with Axioms 1 and 2

First, suppose ρ obeys Equation (1) using (v, F ). Let x, y ∈ A∩B. Then ρ (x,A) ≥ ρ (y, A)
if and only if v (x) ≥ v (y) if and only if ρ (x,B) ≥ ρ (y,B), which establishes Axiom 1. Next,
let (x, y) be distinguishable in A. By definition,

Rxy (A) :=
(

ln ρ (x,A)
ρ (y, A)

)−1

ln ρ (x,X)
ρ (y,X) .

Applying Equation (1) to the right-hand side gives us that

Rxy (A) = F (X)
F (A) ,

which does not depend on the choice of (x, y), and Axiom 2 follows.
Now suppose ρ obeys Axioms 1 and 2. We want to show that Equation (1) holds.

By Axiom 1, if (x, y) is distinguishable in one set, then (x, y) is distinguishable in all sets
that contain this pair. Hence, we will simply say (x, y) is distinguishable to indicate that
ρ (x,A) 6= ρ (y, A) whenever x, y ∈ A. By Axiom 2, for any A ∈ A, we can set R (A) =
Rxy (A) for all distinguishable (x, y) in A. If A does not contain any distinguishable pairs,
set R (A) = 1. By Axiom 1, the two natural log terms in the definition of Rxy (A) have the
same sign. Moreover, if (x, y) is distinguishable then neither natural log term is zero. Thus,
R (A) > 0 holds for all A ∈ A.

Define

α := 1−min
x∈X

lnρ(x,X),

and define v : X → R++ as
v (x) := α + ln ρ (x,X) .

The construction of α ensures that v (x) > 0 for all x ∈ X.
Next define F : A → R++ as

F (A) = R (A) .
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For all A ∈ A, F (A) > 0 since R (A) > 0.
Now choose any A ∈ A. It suffices to show that for each x, y ∈ A

ρ (x,A)
ρ (y, A) = exp

(
v (x)− v (y)

F (A)

)
. (3)

Showing this is enough because we can derive Equation (1) using the fact that probabilities
sum to 1. Fix a pair (x, y). If (x, y) is not distinguishable, then we know v (x) = v (y).
In this case, Equation (3) holds because both sides are equal to 1. Now suppose (x, y) is
distinguishable. We can rewrite Equation (3) as

F (A) ln ρ (x,A)
ρ (y, A) = v (x)− v (y) .

Since A contains a distinguishable pair and F (A) = R (A), this is equivalent to

ln ρ (x,X)
ρ (y,X) = v (x)− v (y) ,

which holds by the definition of v (x), so we are done.
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