
Deriving the Qubit from Entropy Principles

Adam Brandenburger∗ Pierfrancesco La Mura†

Version 03/24/15

The Heisenberg uncertainty principle1 ∆x ·∆p ≥ ~/2 is one of the most famous features
of quantum mechanics. It sets a fundamental limit to the extent to which certain pairs
of physical variables (such as position x and momentum p) can take definite values in
microscopic systems. However, the non-determinism implied by the Heisenberg un-
certainty principle — together with other prominent aspects of quantum mechanics
such as superposition, entanglement, and nonlocality — poses deep puzzles about the
underlying physical reality, even while these same features are at the heart of excit-
ing developments such as quantum cryptography, algorithms, and computing. These
puzzles might be resolved if the mathematical structure of quantum mechanics were
built up from physically interpretable axioms, but it is not. Conventionally, a formal
structure (e.g., unit vectors in Hilbert space) is simply posited and is then seen to
work. We contribute to the program to axiomatize quantum mechanics, by proposing
two physically-based axioms which together characterize the simplest quantum system,
namely the qubit. Our starting point is the class of all no-signaling theories2, which
respect the condition that information cannot be transmitted faster than the speed of
light. Each such theory can be regarded as a family of empirical models, where each
empirical model specifies a set of possible measurements on the physical system, and,
for each measurement, a probability distribution on outcomes. Next, to measure the
information in an empirical model, we move to phase space3 and use Rényi entropy4,
which is a general family of entropy measures that satisfies extensivity (i.e., is additive
across statistically independent systems) and includes Shannon entropy5 as a special
case. Within this framework, we take two important features of quantum mechan-
ics and turn them into physically justified axioms. The first axiom is an Uncertainty
Principle, stated in terms of entropy. The second axiom is an Unbiasedness Princi-
ple, which requires that whenever there is complete certainty about the outcome of a
measurement in one of three mutually orthogonal directions, there must be maximal
uncertainty about the outcomes in each of the two other directions. We show that
the quantum mechanics of a single qubit, as represented by the Bloch sphere, is fully
characterized by our two axioms.
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The search for underlying principles or axioms yielding quantum mechanics has a long history,
including attempts to understand quantum mechanics as a non-classical logic6 and, in recent years,
much work employing information-theoretic principles such as communication complexity7, infor-
mation causality8, information capacity9, and purification10.

One goal of this search is to provide insight into why the formal structure of quantum mechanics
takes the shape it does. With the rise of the field of quantum information and the discovery of novel
information processing algorithms (e.g., for database search11 and prime factorization12), there is
another good reason to look for axioms. Finding a set of principles that yield quantum mechanics
may offer insight into what kinds of tasks can and cannot be achieved by use of quantum information
resources.

An important step in this quest was the formulation of the no-signaling condition2, which says
that the statistics of the outcomes of measurements that Alice makes on her part of a physical
system cannot depend on the choices of measurement Bob makes on his part of the system. Any
theory that does not satisfy no signaling conflicts with special relativity, which forbids instantaneous
transmission of information. But, while quantum mechanics satisfies no signaling, this condition also
allows superquantum systems such as the so-called PR boxes2. Nevertheless, the family of all no-
signaling theories makes a good starting point from which to try to identify quantum theory.

Within the family of no-signaling theories, we want to model the simplest non-trivial system,
namely a two-level system such as the spin of a particle. The experimenter can observe a property
such as spin in three arbitrarily chosen mutually orthogonal directions x, y, and z. In each direction,
the outcome of a measurement is 0 or 1. An empirical model (see Figure 1) gives the frequencies
of these outcomes when identical copies of the same two-level system are prepared and one of the
three measurements is performed on a given copy. For the x-, y-, and z-directions, the frequencies
of the 0 outcome are fx, fy, and fz, respectively.
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Figure 1: An Empirical Model

Later, we will want to state an Uncertainty Principle in entropic form and, to do this, we need
to associate entropies with empirical models. This step is not immediate because entropy is a
measure of the information in a single probability distribution, and an empirical model contains
three probability distributions (one for each direction). Our solution is to move to phase space,
where an empirical model is represented by a single probability distribution. The phase space Ω
for a two-level system contains eight points ω000, ω001, ω010, . . . , ω111, where each point specifies the
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outcomes (0 or 1) of each of the three possible measurements. We label the points so that if the state
is ωabc, the outcomes of the x-, y-, and z- measurements are a, b, and c, respectively. The possibility
of a non-deterministic response to measurement — as in quantum mechanics — is allowed for by
specifying a probability qabc for each point ωabc. We can now represent a particular empirical model
given by frequencies fx, fy, fz as a probability distribution in phase space, where the phase-space
probabilities satisfy:

q000 + q001 + q010 + q011 = fx, (1)

q000 + q001 + q100 + q101 = fy, (2)

q000 + q010 + q100 + q110 = fz. (3)

These equations ensure that the phase-space representation reproduces the correct frequencies for
outcome 0 (and therefore for 1) in each of the three directions. In general, the phase-space proba-
bilities that reproduce a given empirical model are not unique, but we have achieved the immediate
goal of representing each empirical model through a single (if not uniquely defined) probability
distribution.

A phase-space representation of an empirical model can be thought of as a particular type of local
hidden-variable model13, where the possible values of the hidden variable are precisely the possible
points in phase space. It follows from Bell’s Theorem13 that there are empirical models which arise
in quantum mechanics and which cannot be represented in phase space with ordinary non-negative
probabilities. We follow Wigner3, Dirac4, and Feynman5 in allowing probabilities to be negative,
in which case it can be shown that the family of empirical models which can now be represented is
precisely the family of all no-signaling theories14. We emphasize that even though the probabilities
q000, q001, q010, . . . , q111 are allowed to take negative values, the frequencies of all observable events,
namely the sums of probabilities in equations (1)-(3), remain non-negative.

We are now ready to associate entropies with probability distributions on phase space. Within
quantum mechanics, the most common entropy measure is the von Neumann entropy15 S(ρ) =
−Tr(ρ log ρ) where ρ is the density matrix. This is unsuitable for our purpose because it is defined
within the quantum formalism, while we want to derive rather than assume this structure. Shannon
entropy16 is also unsuitable when applied to probabilities in phase space, because the latter can be
negative (in which case, Shannon entropy would take complex values). To avoid these shortcomings,
we shall work with Rényi entropy17, which is a general family of entropy measures that includes
Shannon entropy as a special case. Rényi entropy satisfies the basic requirement of extensivity, i.e,
it is additive across statistically independent systems. In fact, it is defined by this property together
with some technical axioms; details are given in the Supplementary Information. The Rényi notion
is used in various applications in quantum mechanics18,19.

To define Rényi entropy, start with a finite probability space, i.e., a finite set X = {x1, . . . , xn}
together with a probability distribution q on X. Write q = (q1, q2, . . . , qn) where each qi ≥ 0 and∑
i qi = 1. The Rényi entropy of q is defined as a family of measures indexed by a free parameter

0 < α <∞:

Hα(q) =


− 1
α−1 log2(

n∑
i=1

qαi ) if α 6= 1,

−
n∑
i=1

qi log2 qi if α = 1.
(4)

We see that Shannon entropy is the particular case α = 1. In the Supplementary Information,
we extend the axioms for Rényi entropy to the domain of signed probability distributions, i.e., to
q = (q1, q2, . . . , qn) where

∑
i qi = 1 but we now allow qi < 0 for some i. This extension identifies

a smaller family of Rényi entropies, namely all entropies Hα(q) where α is an even positive integer,
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i.e. α = 2k, for k = 1, 2, 3, . . .. At first sight, it may seem surprising that extending Rényi entropy to
a larger domain has the effect of limiting the values of α that yield well-behaved entropies. However,
this is correct. When defining an object (here, Rényi entropy) via axioms, if one asks that the
axioms hold over a larger vs. smaller set (here, signed vs. unsigned probability distributions), this
puts more restrictions on the form the object can take.

With our phase space-Rényi entropy framework in place, we can now choose certain physical
properties satisfied by quantum mechanics and express them as axioms in this framework — with
the hope that these axioms will then identify the theory. The first property we introduce is an
Uncertainty Principle expressed in entropic terms. Differently from other entropic Uncertainty
Principles in quantum mechanics20,21,22,23, our principle is formulated in phase space. Furthermore,
we do not derive the principle from quantum mechanics but introduce it as an axiom. Because
Rényi entropy is a family of measures of information, indexed by k, we should state our Uncertainty
Principle as holding independently of the specific value of k. The principle specifies a lower bound
on entropy for each value of k. The values of the lower bounds β2k will be implied by our second
axiom.

Uncertainty Principle: An empirical model defined by frequencies fx, fy, fz is allow-
able if and only if for every k = 1, 2, 3, . . ., there is a phase-space probability distribution
q that represents it and that satisfies H2k(q) ≥ β2k.

In quantum mechanics, a set of measurements on a system is called mutually unbiased24, or
complementary, if complete certainty of the measured value of the outcome of one of them implies
maximal uncertainty about the outcomes of the others. Mutually unbiased measurements play a
central role in the reconstruction of quantum states from observation of outcomes25 and in public
key distribution in quantum cryptography26. As we did with the Uncertainty Principle, we now
turn this feature of quantum mechanics into an axiom. Specifically, we shall assume that the three
measurement directions in the empirical model of Figure 1 form a mutually unbiased set.

Unbiasedness Principle: If there is probability 1 of observing one of the outcomes
(0, say) in the x-direction, then there must be probability 1/2 of observing each of
the outcomes 0 and 1 in the y-direction, and probability 1/2 of observing each of the
outcomes 0 and 1 in the z-direction.

Algebraically, the axiom says that if fx = 1, then fy = 1/2 and fz = 1/2 (see Figure 2). The
analogous conditions are required to hold if fx = 0 and when we permute the roles of x, y, and z in
the stated condition.

The Unbiasedness Principle implies that the lower bounds β2k in the Uncertainty Principle must
be equal to 2 for all k. The proof proceeds by showing that there is a phase-space probability
distribution q that represents an empirical model with probabilities fx = 1, fy = (1 + ε)/2, fz = 1/2
and that satisfies H2k(q) > 2− δ(ε). Here, δ(ε) ↓ 0 as ε ↓ 0, and therefore, if β2k < 2, we can choose
ε sufficiently small (but still positive) so that the Uncertainty Principle holds. But if ε > 0, then
fy 6= 1/2 and therefore the empirical model violates the Unbiasedness Principle. Details of the proof
are in the Supplementary Information.

Summarizing so far, we want to find all empirical probabilities that satisfy the Uncertainty and
Unbiasedness Principles. To solve this problem, it will be helpful to re-parameterize the empirical
model of Figure 1 by setting rj = 2fj − 1 for j = x, y, z. Since −1 ≤ rj ≤ 1 for each j, we can now
identify each empirical model with a point (rx, ry, rz) in the cube [−1, 1]3. For each Rényi entropy
H2k, we define a set R2k of points in the cube by:

R2k = {(rx, ry, rz) ∈ [−1, 1]3 : ∃ q with H2k(q) ≥ 2 which represents (rx, ry, rz)}. (5)
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Figure 2: The Unbiasedness Principle

Our problem is to identify the intersection ∩kR2k of all these sets. This is the set of empirical
models that satisfy our axioms.

The first step is to show that the sequence of sets R2,R4, . . . ,R2k,R2(k+1), . . . takes a simple
form. If only non-negative phase-space probability distributions q were allowed, then Rényi entropy
Hα(q) would be monotonically decreasing in the free parameter α and we would get H2(q) ≥ H4(q) ≥
· · · ≥ H2k(q) ≥ H2(k+1)(q) ≥ · · · . Because of this inclusion and equation (5), the R2k sets would
then be decreasing: R2 ⊇ R4 ⊇ · · · ⊇ R2k ⊇ R2(k+1) ⊇ · · · . But we know that in order to represent
quantum mechanics and other non-classical theories, we must admit probability distributions with
negative entries, and in this case Rényi entropy Hα(q) is no longer monotonic in α (neither decreasing
nor increasing). The main mathematical step in the paper (found in the Supplementary Information)
uses convex optimization and duality to prove that, once signed probability distributions are allowed,
the ordering of theR2k sets is reversed: R2 ⊆ R4 ⊆ · · · ⊆ R2k ⊆ R2(k+1) ⊆ · · · . Figure 3 depicts five
nested convex regions (starting with blue and ending with red) that correspond to the projections
onto the x-y plane of the first five sets in this sequence.

This step tells us that the set ∩kR2k of empirical models that satisfy our three axioms is equal
to the first set in the sequence, namely R2. The remaining step (also found in the Supplemen-
tary Information) is to identify the set R2. This step can be formulated as a simple constrained
optimization problem and solved in closed form to yield:

R2 = {(rx, ry, rz) ∈ [−1, 1]3 : r2x + r2y + r2z ≤ 1}. (6)

Equation (6) says that the set of empirical models, parametrized by the three numbers rx, ry,
rz, coincides with the unit ball in Euclidean (R3) space. (The projection of the unit ball onto the
x-y plane is the blue innermost region in Figure 3.) Call a point in the unit ball a state of our
two-level system. Then our result can be stated in the following form: For any choice of directions
x, y, z, and choice of frequencies (1 + rx)/2, (1 + ry)/2, (1 + rz)/2 of the 0 outcomes, the system can
be prepared in a state such that these frequencies coincide with those obtained from measurements
along the three directions. This is exactly the Bloch sphere27 representation of a qubit, when defined
with respect to the same three directions. Observe that the states with minimum entropy (namely,
entropy of 2) lie on the surface of the unit ball. These are the pure states in the Bloch sphere
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Figure 3: Empirical Models Projected onto the x-y Plane

representation. All interior points in the unit ball have strictly higher entropy and correspond to
the mixed states in the Bloch sphere.

A description of the qubit which is equivalent to the Bloch sphere, but cast in terms of signed
probabilities, is the discrete Wigner function28. In the Supplementary Information we relate the two
descriptions and show that our axioms equally identify the single-qubit Wigner function.

In this paper we succeed in axiomatizing only the single qubit. Nevertheless, we believe that our
approach can be extended to multiple qubits. In particular, our axioms remain meaningful in the
case of n-qubit systems and we hope that, in conjunction with some additional axioms, they will
offer a general characterization. A number of related papers29,30,31,32 treat the n-qubit case, but at
the cost of offering partial rather than full characterizations.

We see our axiomatization of the qubit as in line with the program enunciated by Fuchs33

to find “deep physical principles” that yield quantum mechanics. But, in the end, the value of
any axiomatization lies in the potential to bring new insights to our understanding of quantum
mechanics. We emphasize that there is no claim that our axioms are self-evident. In relativity
theory, the principle of light speed invariance is not an intuitive axiom — the point is that it
is physically intelligible. Our interest in the Uncertainty Principle — which refers to a limit to
definiteness in microscopic systems — as an axiom is that it passes this same test. The same is true
of the Unbiasedness Principle. Both axioms are very mysterious at the everyday macroscopic level,
but they are physically intelligible — if famously surprising — and evidently true of microscopic
systems.
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Supplementary Information can be found at adambrandenburger.com/articles/papers.
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