
A Purification Theorem for

Perfect-Information Games∗

Adam Brandenburger† Amanda Friedenberg‡

September 2002
Revised January 2007

Kalmar [2, 1928-9] proved that Chess is strictly determined. Von Neumann-Morgenstern [5,
1944] proved the same for any finite two-person zero-sum perfect-information (PI) game. The latter
result yields a minimax theorem for (finite) non-zero-sum PI games.1 Fix a PI, and a player, Ann.
Convert this game to a two-person zero-sum game between Ann and the other players (considered
as one player), in which Ann gets the same payoffs as in the initial game. In the new game, the
minmax of Ann’s payoffs is equal to the maxmin of Ann’s payoffs. Since this statement involves
only Ann’s payoffs, it must also hold in the initial game.

In this note we first prove a generalization of this fact: The minmax and maxmin of Ann’s
payoffs are still equal, when they are taken over subsets of strategies, provided the subsets for the
players other than Ann are rectangular.

We then use this generalization to prove a purification result: Fix a PI game, a strategy s for
Ann, and rectangular subsets of strategies for the players other than Ann. Suppose s is weakly
dominated with respect to these subsets. That is, suppose there is a mixed strategy for Ann that
gives her at least as high a payoff for each profile of pure strategies for the other players, taken from
the given subsets, and a strictly higher payoff against at least one such profile. Then there is a pure
strategy for Ann that weakly dominates s in the same sense.

Kalmar’s [2, 1928-9] proof was forward looking. Another forward-looking argument is Kuhn’s [3,
1950], [4, 1953] well-known proof that every finite PI game has a pure-strategy Nash equilibrium.”
Our arguments, too, are forward looking, proceeding by induction on the length of the tree.

1 Perfect-Information Games

An extensive-form PI game is defined as follows: Let {a, b} be the set of players.2 A tree is given by a
finite set of nodes N , which are partially ordered by �. The set N has a least element φ with respect
to �. That is, φ is the initial node. The set of terminal nodes is Z = {z ∈ N : z � z′ → z = z′}.

∗Previously titled “A Generalized Minimax Theorem for Perfect-Information Games.” We thank Elchanan Ben
Porath, Konrad Grabiszewski, and Jeroen Swinkels for helpful comments. Financial support from the Stern School
of Business and the Department of Economics, Yale University, is gratefully acknowledged. p t p i -0 1 -1 6 -0 7
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1Stated in, e.g., Ben Porath [1, 1997]. We are grateful to Elchanan Ben Porath for the following argument.
2This is for notational convenience only. Our arguments immediately extend to games with three or more players—

provided the rectangularity conditions hold.
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The set of non-terminal nodes is X = N\Z. Information sets are given by sets {x}, where x ∈ X.
Often, we will identify an information set {x} with x. The set of choices available at node x ∈ X
is the set of immediate successors of x; denote this set by C (x).3 The mapping ι : X → {a, b}
specifies the player who moves at each information set. Let Xa = {x ∈ X : ι (x) = a}, and define
Xb analogously. Extensive-form payoff functions are given by Πa : Z → R and Πb : Z → R.

A strategy for player a is a mapping from information sets into available choices. That is, the
strategy set for a is Sa = ×x∈XaC (x). Let S = Sa × Sb. A strategy profile s ∈ S determines a
path through the tree. Let ζ : S → Z where ζ (s) = z if and only if s reaches the terminal node z.
Strategic-form payoff functions are given by πa = Πa ◦ ζ and πb = Πb ◦ ζ.

2 A Generalized Minimax Theorem

Take C (φ) = {1, ..,K}. For each k, let Sak = ×x∈Xa:k�xC (x). If ι (φ) = a, Sa = C (φ)×
(
×Kk=1S

a
k

)
.

In this case, denote by Sa (k) = {k} × Sak . If ι (φ) 
= a, Sa = ×Kk=1S
a
k . Write projSa

k
sa = sak if

sa = (j, sa1, ..., s
a
k, ..., s

a
K).

Definition 2.1 A subset Y a of Sa is rectangular if it is a product set, i.e., if Y a = ×x∈XaY a (x)
where, for each x ∈ Xa, Y a (x) ⊆ C (x) with Y a (x) 
= ∅.

Notice that if both Y a and Y b are rectangular subsets, then there is another PI game Γ′ where
Y a and Y b can be identified with strategy sets of Γ′. But, if rectangularity of one of these sets fail,
there may be no such tree.4 Thus, the following result is a generalization of the Minimax Theorem:

Theorem 2.1 Fix a PI game. Let Y a be a subset of Sa and Y b be a rectangular subset of Sb.
Then,

min
sb∈Y b

max
sa∈Y a

πa
(
sa, sb

)
= max
sa∈Y a

min
sb∈Y b

πa
(
sa, sb

)
.

Proof. By induction on the length of the tree.
Length = 1: If ι (φ) = a then Sb = {∅}. So, certainly

min
sb∈Y b

max
sa∈Y a

πa
(
sa, sb

)
= max
sa∈Y a

πa (sa, ∅) = max
sa∈Y a

min
sb∈Y b

πa
(
sa, sb

)
.

If ι (φ) = b then Sa = {∅}. We then have

min
sb∈Y b

max
sa∈Y a

πa
(
sa, sb

)
= min
sb∈Y b

πa
(
∅, sb

)
= max
sa∈Y a

min
sb∈Y b

πa
(
sa, sb

)
,

as desired.
Length ≥ 2: Assume the result is true for any tree of length λ or less. Fix a tree of length

λ+ 1.
First suppose ι (φ) = a. Since Y b is rectangular, we can write Y b = ×Kk=1Y

b
k , where each Y bk is

a rectangular subset of Sbk.
Let

(
sak, s

b
k

)
∈ arg max

sa∈Y a∩Sa(k)
min
sb
k
∈Y b

k

πa
(
sa, sbk

)
. Consider sb ∈ Sb such that projSb

k
sb = sbk for

each k. Since Y b is rectangular, sb ∈ Y b. Let
(
sa1, s

b
1

)
∈ Y a × Y b1 be such that πa

(
sa1, s

b
1

)
≥

πa
(
sak, s

b
k

)
for each k with Y a ∩ Sa (k) 
= ∅.

3An immediate successor of x is a node y ∈ N with x � y and x � y′ → y � y′.
4We thank Jeroen Swinkels for this point.
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It follows that
(
sa1, s

b
)
∈ arg max

sa∈Y a
min
sb∈Y b

πa
(
sa, sb

)
: For any sa ∈ Y a, sb ∈ arg min

sb∈Y b
πa
(
sa, sb

)

if and only if projSb
k
sb ∈ arg min

sb
k
∈Y b

k

πa
(
sa, sbk

)
for k such that sa ∈ Sa (k). So, certainly, sb ∈

arg min
sb∈Y b

πa
(
sa, sb

)
for some sa ∈ Y a. Suppose there exists ŝb ∈ arg min

sb∈Y b
πa
(
sa, sb

)
such that,

for some ŝa ∈ Y a, πa(ŝa, ŝb) > πa
(
sa1, s

b
)
. Without loss of generality, take (ŝa,projSb

k
ŝb) ∈

arg max
sa∈Y a∩Sa(k)

min
sb
k
∈Y b

k

πa
(
sa, sbk

)
for k with ŝa ∈ Sa (k). This contradicts the choice of

(
sa1 , s

b
1

)
.

Similarly, for each k, let (sak, s
b
k) ∈ arg min

sb
k
∈Y b

k

max
sa∈Y a∩Sa(k)

πa
(
sa, sbk

)
. Let πa

(
sa, sb

)
:=

min
sb∈Y b

max
sa∈Y a

πa
(
sa, sb

)
. Define

MAX(Y a) = {sa ∈ Y a : sa ∈ argmax
Y a

πa
(
·, sb

)
for some sb ∈ Y b}.

It will be shown that, for some j with Y a ∩ Sa (j) 
= ∅, πa(saj , s
b
j) ≥ πa

(
sa, sb

)
. To do so, it

suffices to show that for some such j with Y a ∩ Sa (j) 
= ∅, saj ∈ MAX(Y
a). Then

max
Y a

πa
(
sa, sb

)
≤ πa(saj , s

b
j),

for all sbj ∈ Y
b
j . So, certainly

max
Y a

πa
(
sa, sb

)
≤ πa(saj , s

b
j).

Pick j such that πa(saj , s
b
j) ≥ π

a
(
sak, s

b
k

)
for each k with Y a ∩ Sa (k) 
= ∅. Suppose for each k

with Y a ∩ Sa (k) 
= ∅, there exists sbk such that πa(saj , s
b
j) ≥ maxY a∩Sa(k) π

a
(
sa, sbk

)
= πa

(
sak, s

b
k

)
.

Pick sb ∈ Sb so that projSbj s
b = sbj , projSbk s

b = sbk for k with Y a ∩ Sa (k) 
= ∅, and projSb
k
sb ∈ Yk

otherwise. Since Y b is rectangular, sb ∈ Y b. Then saj ∈ MAX(Y
a). So, if saj /∈ MAX(Y

a), there

exists k with Y a ∩ Sa (k) 
= ∅ such that πa
(
sak, s

b
k

)
> πa(saj , s

b
j), for all s

b
k ∈ Y

b
k . Certainly, for this

k, πa
(
sak, s

b
k

)
> πa(saj , s

b
j), a contradiction.

With this πa
(
sa1, s

b
)
= πa

(
sa, sb

)
. Indeed, suppose not. Then

πa
(
sa1, s

b
)
< πa

(
sa, sb

)

≤ πa(saj , s
b
j) = π

a
(
saj , s

b
j

)

≤ πa
(
sa1, s

b
1

)
= πa

(
sa1, s

b
)
,

where the first line comes from maxminπa (·, ·) ≤ minmaxπa (·, ·), the second line comes from the
choice of (saj , s

b
j) and the induction hypothesis, and the third line comes from the choice of

(
sa1, s

b
1

)
.

But this is a contradiction.
Now suppose ι (φ) 
= a. For each k, let πa

(
rak, r

b
k

)
= max

sa
k
∈Y a

k

min
sb∈Y b∩Sb(k)

πa
(
sa, sbk

)
. Further, let

πa
(
ra, rb

)
= max
sa∈Y a

min
sb∈Y b

πa
(
sa, sb

)
. Define

MIN
(
Y b
)
= {sb ∈ Y b : sb ∈ argmin

Y b
πa (sa, ·) for some sa ∈ Y a}.

It will be shown that, for some 1 with Y b ∩ Sb (1) 
= ∅, πa
(
ra1, r

b
1

)
≤ πa

(
ra, rb

)
. To do so, it

suffices to show that for some such 1 with Y b ∩ Sb (1) 
= ∅, rb1 ∈MIN
(
Y b
)
. Then

min
Y b
πa
(
ra, sb

)
≥ πa

(
ra1 , r

b
1

)
,
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for all ra1 ∈ Y
a
1 . So, certainly

min
Y b
πa
(
ra, sb

)
≥ πa

(
ra1, r

b
1

)
.

Pick 1 such that πa
(
ra1, r

b
1

)
≤ πa

(
rak, r

b
k

)
for each k : Y b ∩ Sb (k) 
= ∅. Suppose for each k with

Y b ∩ Sb (k) 
= ∅, there exists rak such that πa
(
ra1 , r

b
1

)
≤ minY b∩Sb(k) π

a
(
rak, s

b
)
= πa

(
rak , r

b
k

)
. Pick

ra ∈ Sa so that projSa
1

ra = ra1, projSa
k
ra = rak for k with Y b ∩ Sb (k) 
= ∅, and projSa

k
ra ∈ Y ak

otherwise. Since Y a is rectangular, ra ∈ Y . Then rb1 ∈ MIN
(
Y b
)
. So, if rb1 /∈ MIN

(
Y b
)
, there

exists k with Y b ∩Sb (k) 
= ∅ such that πa
(
rak , r

b
k

)
< πa

(
ra1, r

b
1

)
, for all rak ∈ Y

a
k . Certainly, for this

k, πa
(
rak, r

b
k

)
< πa

(
ra1, r

b
1

)
, a contradiction.

Let πa
(
rak, r

b
k

)
= minsb∈Y b∩Sb(k)maxsak∈Y a

k
πa
(
sak, s

b
)
. Define ra ∈ Sa so that projSa

k
ra = rak;

note that ra ∈ Y , as Y is rectangular. Pick
(
raj , r

b
j

)
so that πa

(
raj , r

b
j

)
≤ πa

(
rak, r

b
k

)
for each k with

Y b ∩ Sb (k) 
= ∅.
Note, (ra, rbj) ∈ arg min

sb∈Y b
max
sa∈Y a

πa
(
sa, sb

)
: For each sb ∈ Y b ∩ Sb (k), sa ∈ argmaxY a πa

(
sa, sb

)

if and only if projSa
k
sa ∈ argmaxY a

k
πa
(
sak, s

b
)
. So, certainly, ra ∈ argmaxY a πa

(
sa, sb

)
for

some sb ∈ Y b. Suppose there exists r̂b ∈ Y b ∩ Sb (k) such that πb(r̂a, r̂b) < πb(ra, rbj) for

some r̂a ∈ argmaxY a πa
(
sa, sb

)
. Without loss of generality, take (r̂a, r̂b) so that πa(r̂a, r̂b) =

minrb∈Y b∩Sb(k)maxsak∈Y a
k
πa
(
sak, s

b
)
. But this contradicts πa(raj , r

b
j) ≤ π

a
(
rak, r

b
k

)
for each k with

Y b ∩ Sb (k) 
= ∅.
It follows that πa

(
ra1, r

b
)
= πa(raj , r

b), since

πa(ra, rbj) = πa(raj , r
b
j)

≤ πa
(
ra1 , r

b
1

)

= πa
(
ra1 , r

b
1

)

≤ πa
(
ra, rb

)
≤ πa(ra, rbj),

where the second line comes from the choice of (raj , r
b
j), the third line comes from the induction

hypothesis, and the fourth line comes from the choice of
(
ra1, r

b
1

)
and the fact that maxminπa (·, ·) ≤

minmaxπa (·, ·).

3 A Purification Theorem

We need a preliminary result: If a strategy for Ann is inadmissible with respect to a rectangular
subset of strategies for Bob, then Ann’s strategy must be weakly dominated by a mixture that
reaches a single subtree k.

Some notation: For a finite set X, letM(X) denote set of all probability measures on X. Then:

Lemma 3.1 Fix a PI game with ι (φ) = a. If sa is inadmissible with respect to a rectangular subset
Y b of Sb, then there exists k and σa ∈M (Sa), with σa (Sa (k)) = 1, such that

πa
(
σa, sb

)
≥ πa

(
sa, sb

)
for all sb ∈ Y b,

πa
(
σa, sb

)
> πa

(
sa, sb

)
for some sb ∈ Y b.

Proof. Let σ̂a ∈M (Sa) be such that

πa
(
σ̂a, sb

)
≥ πa

(
sa, sb

)
for all sb ∈ Y b,

πa
(
σ̂a, sb

)
> πa

(
sa, sb

)
for some sb ∈ Y b.

4



Let k = 1, ..,K ≤ K be such that σ̂a (ra) > 0 for some ra ∈ Sa (k). For each k = 1, ..,K, define

σ̂ak (r
a) =

σ̂a (ra)∑
qa∈Sa(k)

σ̂a (qa)
.

It is readily verified that σ̂ak (S
a (k)) = 1. Also, for each sb ∈ Y b,

πa
(
σ̂a, sb

)
=

K∑

k=1

[(
∑

qa∈Sa(k)

σ̂a (qa))× πa
(
σ̂ak, s

b
)
].

Suppose, for each k = 1, ..,K, σ̂ak does not weakly dominate sa with respect to Y b. Then, for
each such k, either: (i) πa

(
σ̂ak, s

b
)
= πa

(
sa, sb

)
for each sb ∈ Y b; or (ii) there exists rb ∈ Y b with

πa
(
sa, rb

)
> πa

(
σ̂ak, r

b
)
. Notice that if (i) holds for all k = 1, ..,K, then for all sb ∈ Y b,

πa
(
σ̂a, sb

)
=

K∑

k=1

[(
∑

qa∈Sa(k)

σ̂a (qa))× πa
(
sa, sb

)
] = πa

(
sa, sb

)
,

a contradiction. So, (ii) must hold for some such k.
For each k = 1, ...,K satisfying (ii), let rbk = projSb(k) r

b and, if sa ∈ Sa (j) for j 
= k, let

rbj = projSb(j) r
b. Set rb =

(
rb1, ..., r

b
K

)
where rbk is as above, if defined, and is otherwise an arbitrary

element of Yk. Since Y b is rectangular, rb ∈ Y b. But

πa
(
σ̂a, rb

)
=

K∑

k=1

[(
∑

qa∈Sa(k)

σ̂a (qa))× πa
(
σ̂ak, r

b
)
] < πa

(
sa, rb

)
,

where the inequality comes from the fact that (ii) holds for some k = 1, ...,K.

We now come to the purification result:

Theorem 3.1 Fix a PI game. If sa is inadmissible with respect to a rectangular subset Y b of Sb,
then there exists ra ∈ Sa such that

πa
(
ra, sb

)
≥ πa

(
sa, sb

)
for all sb ∈ Y b,

πa
(
ra, sb

)
> πa

(
sa, sb

)
for some sb ∈ Y b.

Proof. By induction on the length of the tree.
Length = 1: Without loss of generality, let ι (φ) = a. Here Sb = {∅}, so each sb is admissible.

Moreover, if there exists σa ∈ M (Sa) such that πa (σa, ∅) > πa (sa, ∅) then certainly there exists
ra ∈ Suppσa such that πa (ra, ∅) > πa (sa, ∅), as required.
Length ≥ 2: Assume the result is true for any tree of length λ or less. Fix a tree of length

λ+ 1.
First, suppose ι (φ) = a. Fix sa ∈ Sa (1) and suppose sa is inadmissible with respect to a

rectangular Y b. Then, by Lemma 3.1, there exists k with σa (Sa (k)) = 1 such that, for all sb ∈ Y b,
πa
(
σa, sb

)
≥ πa

(
sa, sb

)
, with strict inequality for some sb ∈ Y b. Without loss of generality, pick

σa so that ra ∈ Suppσa implies that there exists sb ∈ Y b with πa
(
sa, sb

)

= πa

(
ra, sb

)
.

Suppose first that Suppσa ⊆ Sa (1). Then by the induction hypothesis, there exists ra ∈ Sa (1)
such that

πa
(
ra, sb1

)
≥ πa

(
sa, sb1

)
∀sb1 ∈ Y

b
1

πa
(
ra, sb1

)
> πa

(
sa, sb1

)
for some sb1 ∈ Y

b
1

;
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the result is then immediate. So, let Suppσa ⊆ Sa (k), for k 
= 1.
Pick rb1 ∈ argmaxsb

1
∈Y1

πa
(
sa, sb1

)
and let Y b0 = {s

b ∈ Y b : projY b
1

sb = rb1}. Let Y a0 := Suppσ.

Let πa
(
sa, sb

)
= maxY a

0
minY b

0

πa (·, ·) and πa
(
sa, sb

)
= minY b

0

maxY a
0
πa (·, ·). Then, for all sb ∈

Y b,

πa
(
sa, sb

)
≤ πa

(
sa, sb

)

≤ πa
(
sa, sb

)

= πa
(
sa, sb

)

≤ πa
(
sa, sb

)
,

where the first line comes from the choice of rb1, the second line from the definition of minmax, the
third line from Theorem 2.1, and the last line from the definition of maxmin. By choice of σa,
there exists sb ∈ Y b, with πa

(
sa, sb

)
> πa

(
sa, sb

)
, establishing the desired result.

Now suppose ι (φ) 
= a. Let σa ∈M (Sa) be such that, for all sb ∈ Y b, πa
(
σa, sb

)
≥ πa

(
sa, sb

)
,

with strict inequality for some sb ∈ Y . Write sa = (sa1 , .., s
a
K). For each k with Y b ∩ Sb (k) 
= ∅,

define
σak (r

a
k) =

∑

ra∈Sa:projSa
k
ra=ra

k

σa (ra) .

It is readily verified that σak (S
a(k)) = 1. For each k with Y b ∩ Sb (k) 
= ∅, πa

(
σak, s

b
)
≥

πa
(
sak, s

b
)
for all sb ∈ Y b ∩ Sb (k). Moreover, there exists k, with sb ∈ Y b ∩ Sb (k), such that

πa
(
σak, s

b
)
> πa

(
sak, s

b
)
.

By the induction hypothesis, for each such k, there exists rak ∈ S
a (k) such that πa

(
rak, s

b
)
≥

πa
(
sak, s

b
)
for all sb ∈ Y b ∩ Sb (k), with strict inequality for some sb ∈ Y b ∩ Sb (k). For all other k,

set rak = s
a
k. Set ra = (ra1 , ..., r

a
K). It is readily verified that ra satisfies the desired properties.
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