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Inspired by the bargaining procedure of Shapley (1953), we intro-
duce a novel procedure in which the marginal contribution of the
player joining a coalition is split in any proportion between that
player and the members of the coalition being joined. Surprisingly,
this more general procedure also leads to the Shapley value. Depart-
ing from the random-ordering assumption underneath the Shapley
value (and our generalized procedure) leads to a new extension of
the Shapley value where weights on players depend endogenously
on marginal contributions.
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The Shapley value (Shapley, 1953) results from an axiomatic approach to the
allocation of value in a cooperative game. It has an elegant procedural implemen-
tation: let the grand coalition of all players be constructed by players joining one
at a time in a random order. In each ordering, give all the marginal value created
by the new player joining the coalition to that player. The expected value is the
Shapley value.
In this procedure, which we will call the Shapley procedure, the “negotiation”

between the new player and the existing players involves an extreme division of
value. The player who joins a coalition receives the full amount of the benefit
created. This feature has been commented on by Brock (1992):

A criticism of this [Shapley’s] scheme is that a player is awarded his
entire (utility) contribution to a coalition. This violates an intuitive
symmetry whereby we would expect the player to receive only a por-
tion of his contribution to the coalition.

While each of the possible orderings in the Shapley procedure leads to an ex-
treme division of value which appears unfair, the average across all the unfair
options may be seen as fair. The unfairness averages out. Even so, at an intuitive
level, we think a procedure would be more attractive were the gains more evenly
balanced among the parties in each possible ordering.

∗ NYU Stern School of Business, NYU Tandon School of Engineering, NYU Shanghai, New
York University, adam.brandenburger@stern.nyu.edu; and School of Management, Yale University,
barry.nalebuff@yale.edu. We thank seminar audiences at Washington University in St. Louis, Yale Uni-
versity, and Bianca Battaglia, Jack Fanning, Elio Farina, John Geanakoplos, Sergiu Hart, Roberto Ser-
rano, Kai Hao Yang, and Jidong Zhou for very helpful comments. Financial support from NYU Stern
School of Business, NYU Shanghai, and J.P. Valles is gratefully acknowledged.



In our procedure, the player joining the existing coalition shares the gains with
the members of the coalition in the proportion α: 1−α. When α = 1, we recover
the original Shapley procedure. In the focal case of α = 1/2, the gains are split
evenly. For all 0 ≤ α < 1, the existing members benefit when an additional player
joins. We think this more general procedure is of interest because, at an intuitive
level, it seems fairer, and thus the players may be more willing to go along with
such a procedure.

For any α < 1, we need to describe how the 1 − α share is divided up among
members of the existing coalition. An obvious approach would be to divide this
share equally. However, such a division would not reflect the differing bargaining
positions of the members of the coalition. Even a dummy player, one that adds
no value, would get the same amount as all the other members. Our approach
is to divide the 1 − α share in stages. Each member has a claim equal to their
marginal contribution, where the marginal contribution is to the expanded set
consisting of the existing members and the joining player. We begin with equal
division, but only up to the smallest claim among the members sharing the gains.
After that point, the member with the smallest claim no longer shares in the
division. We divide the remaining share equally among the remaining members,
but only up to the second-smallest claim. And so on. Finally, if no member of
the existing coalition has a claim to the full 1 − α share, the residual reverts to
the joining player. (This case arises only when the joining player has the largest
marginal contribution.)

Surprisingly, our procedure yields the Shapley value for all 0 ≤ α ≤ 1. We see
our result as providing additional support for and understanding of the Shapley
value. It shows that the Shapley value arises under more general circumstances,
and, arguably, more intuitively appealing ones. It also highlights what is essential
to obtaining the Shapley value. The key ingredient is the random ordering of how
players join existing coalitions, not the allocation of all the marginal contribution
to the joining player.

Dividing up the 1 − α share among the members of an existing coalition sug-
gests that each member’s payoff will depend on the marginal contributions of all
the players in the coalition. But the Shapley value payoff to a player depends
only on that player’s marginal contribution. (This fact characterizes the Shapley
value; see Young (1985).) We still get the Shapley value because these extra de-
pendencies cancel out. Each player obtains less than their marginal contribution
when joining a coalition. But this shortfall is exactly offset by the extra amounts
each player collects when other players join all the coalitions to which that player
belongs.

We did not choose our procedure so that this cancellation would occur. We see
our procedure as fully justified on intuitive grounds. The fact that it leads back
to the Shapley value is a “discovery” and not a feature we built in. Our procedure
allows for what we think is a natural interplay between the forces of equal division
and bargaining power. The equal division aspect resembles the “principle of the
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divided cloth” (O’Neill, 1982; Aumann and Maschler, 1985), although we obtain
the Shapley value not the nucleolus (Schmeidler, 1969). See Section VI.A for
further discussion.
A procedure is a way of understanding a cooperative solution concept, but it

is not a non-cooperative implementation of the concept. We do not see this as a
shortcoming of our analysis. A procedure is playable in an intuitive sense, where
the players agree to various divisions of value and do so without an exact offer-
counteroffer protocol that a non-cooperative analysis would require. Nevertheless,
it is possible to provide a fully non-cooperative game that mimics our procedure
and builds on the non-cooperative implementation of the Shapley value in Hart
and Mas-Colell (1996). As we will see, our procedure also suggests a new family of
generalized Shapley values, related to but different from the well-known weighted
Shapley value (Shapley, 1953).
There are several other computational formulas that lead to the Shapley value.

Examples include Harsanyi (1963), Kleinberg and Weiss (1985), Rothblum (1985,
1988), Felsenthal and Machover (1996, 1997), and Bernardi and Freixas (2018).
These formulas do not directly translate into a sequential procedure for the di-
vision of value. For example, Kleinberg and Weiss (1985) and Rothblum (1985)
start by giving each player an equal share of the total and then make adjustments
based on how much value coalitions containing a given player create relative to
the average coalition. Felsenthal and Machover (1996, 1997) and Bernardi and
Freixas (2018) offer a sequential procedure, one in which players join in a ran-
dom order with each voting randomly yes or no, thus creating 2n × n! possible
orderings. The “yes” voters join the prior yes voters and are given their marginal
contribution to that group. The “no” voters are given their marginal contribution
to the set absent the prior no voters. It turns out that this procedure is equivalent
to the original Shapley procedure, just with a different ordering.1

The Shapley procedure and ours build up coalitions by adding an outside player
to each existing coalition (in a random order). We also consider a reverse proce-
dure in which we start with the full set of players and then potentially exclude
players one at a time (in a random order). For each random construction of
a coalition, there is an equivalent deconstruction: instead of players joining in
order ABC, say, we can think of first C, then B, then A contemplating being
excluded. The reverse procedure can be understood as a scenario in which all
players are present at the start and consider what might happen if they fail to
reach an agreement. The players would agree to accept the expected value of the
exclusion procedure. That expectation is again the Shapley value. The reverse
procedure is closest to the non-cooperative implementation of the Shapley value,
which we review later.
We begin in Section I by examining how our procedure works in three-person

1The procedure is equivalent to the Shapley procedure with a reordering of the joining order in which
all the “yes” players join first and then the “no” players join in reverse order. For example, if there are
five players who join in order 1(Y), 2(Y), 3(N), 4(Y), 5(N), the payoff to each is identical to an ordering
of 1, 2, 4, 5, 3 in the traditional Shapley procedure.
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games and show that it leads to the Shapley value. A specific numerical example
helps motivate the way that our procedure divides the 1−α share of value among
the members of a coalition joined. Section II presents our general framework for
any number of players and proves that our procedure yields the Shapley value.
We follow the proof with an explanation of why our procedure yields payoffs
that a priori depend on α, but in the end do not. Section III discusses the
question of uniqueness. Section IV modifies our procedure to run in reverse. The
reverse procedure also points to a new form of the generalized Shapley value where
the chance a player is excluded depends on that player’s marginal contribution.
We examine our generalized Shapley value in Section V. This generalization is
similar to the weighted Shapley value (Shapley, 1953; Kalai and Samet, 1987),
but differs in that the weights are endogenous to the game. Section VI contains
further discussion of related literature, a non-cooperative implementation of our
procedure, and a brief conclusion.

I. Three-Player Examples

We illustrate our procedure (and how it leads to the Shapley value) in the
case of three players A, B, and C. Let v denote the characteristic function
and set v(A) = v(B) = v(C) = 0 (a normalization). For notational simplicity,
we write v(A) rather than v({A}), and similarly with all sets of players. For
i = A,B,C, we denote the marginal contribution of player i to coalition S by
mi(S) = v(S)− v(S\i). We order the players by their marginal contributions to
the grand coalition.2 We typically write mA for mA(ABC), and we likewise use
the abbreviations mB and mC . Our ordering implies mA ≤ mB ≤ mC . (In the
case of a tie, the ordering can be chosen at random.)
As in the Shapley procedure, players join existing coalitions in a random order.

Different from the Shapley procedure, the marginal contribution created by the
joining player is divided up in the proportion α: 1− α, with share α going to the
joining member and share 1−α going to members of the existing coalition. When
α = 1, the two procedures coincide.
When α < 1, we have to specify how the 1 − α share is allocated among the

members of the existing coalition. As explained in the Introduction, equal division
would fail to reflect the players’ different bargaining positions. In particular,
equal division would mean that a player with zero marginal contribution to any
coalition—that is, a dummy player—would get a positive payoff. Instead, our
procedure allocates the 1− α share equally in stages, with each player inside the
coalition being capped by a claim to their marginal contribution. Any unclaimed
value left over after this process reverts to the player joining the coalition.
For example, when α = 0 and player C joins the coalition {AB}, the amount

to be divided up is mC . Think of mC as being split into three parts: mC =

2It is a special feature of the three-player case that only the ordering with respect to the grand coalition
matters. In the general treatment in Section II, the ordering of the players by marginal contributions to
a coalition S will differ across S.
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mA + (mB − mA) + (mC − mB). Players A and B have an equal claim on the
amount mA, since it does not exceed either of their marginal contributions. Thus
mA is split equally between A and B. Player A’s claim stops at mA, and so
player B is the only one with a claim on mB −mA and receives this full amount.
Neither player A nor player B has a claim on mC −mB, since player B’s claim
stops atmB, and so this value reverts to player C. Notice that this reversion arises
only when the player joining the coalition is the one with the largest marginal
contribution.
Table 1 shows the payoffs to player A under our procedure, where the row

labelled ABC refers to the case that player A arrives first, player B second, and
player C third; and likewise for the other rows. We depict the payoffs to player A
for the two extreme cases α = 0 and 1. The payoffs for 0 < α < 1 are the
corresponding weighted average of the two extreme payoffs.
The average payoff to player A is the same for both extreme cases, so this

common value must also be the average value for any 0 < α < 1. Moreover, the
average payoff when α = 1 is the Shapley value, by definition. Thus, the average
payoff to player A is equal to its Shapley value under our generalized procedure
for any value of α.

Table 1—Payoffs to Player A

Payoff to player A when α = 1 Payoff to player A when α = 0

ABC 0 mA(AB) +mA(ABC)/2

ACB 0 mA(AC) +mA(ABC)/2
BAC mA(AB) mA(ABC)/2

CAB mA(AC) mA(ABC)/2

CBA mA(ABC) 0
BCA mA(ABC) 0

Average [mA(AB) +mA(AC) + 2mA(ABC)]/6 [mA(AB) +mA(AC) + 2mA(ABC)]/6

An analogous calculation for player B establishes that this player, too, receives
its Shapley value under our procedure for any α. Turning to player C, who
has the highest marginal contribution, we have to take into account the potential
reversion of value to this player when the claims of players A and B are exhausted.
This makes the calculation for player C more complicated. But we can use the
fact that the total value v(ABC) is allocated under both the Shapley procedure
and our procedure. If players A and B receive their Shapley value then player C,
too, must also get its Shapley value.
The essential feature of our procedure is the nature of the division of the 1−α

share among the members of the existing coalition. There are two steps to how
this division works. The first step is that players’ claims are limited by their
marginal contributions. We assume this not just to ensure that dummy players
get zero. The justification for this condition goes back to the core (Gillies, 1959)
and is standard.
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Our procedure adds a second step, which stipulates equal division to the players
up to their marginal contributions. For example, suppose there is a total of 2 to go
around and players A and B have claims of 1 and 2, respectively. Then the “first”
interval of value, viz. 1, is divided equally since both players have a claim on this
quantity. The “second” interval of value, which is again 1, goes to player B,
since only the second player has a claim on this interval. More generally, equal
division applies to successive intervals of value, where players drop out once their
marginal-contribution bounds are exceeded.
To help develop further intuition for this equal-division step, consider an ex-

ample from Littlechild and Owen (1973), where multiple airlines share the cost
of a common runway. Suppose airline A requires a runway of length 1, while
airlines B and C each require a runway of length 2. The cost per unit length is 1.
The airlines save a total of 3 by sharing a common runway. The characteristic
function v for this game is:

v(A) = v(B) = v(C) = 0; v(AB) = v(AC) = 1, v(BC) = 2; v(ABC) = 3.

The marginal contribution of airline A is mA = 1, while the marginal contribu-
tions of airlines B and C are mB = mC = 2. In this example, the marginal
contributions are the cost savings, and it is more intuitive to refer to them as
such.
Suppose α = 1/2 and the arrival order is ABC. Equal division, constrained

by marginal contributions, is natural in this context. Initially, airline A pays
for the full cost of 1 for the first leg of the runway. When airline B joins, it
pays for half the cost of the first leg (since α = 1/2) and pays the full cost of
1 for the second leg. The key question is how {AB} should then divide their
half share of the cost saving of 2 when airline C joins {AB}. Airline A has
only paid for a share of the first leg and only uses the first leg; therefore, it has
no claim to cost savings associated with the second leg. Airlines A and B split
equally the savings associated with the first leg of the runway. Airline B keeps all
the savings associated with the second leg of the runway. Thus, airline A saves
1/2 × (1/2 × 1) = 1/4, and airline B saves 1/2 × (1/2 × 1 + 1 × 1) = 3/4. The
two players being joined share equally in the division of the 1−α portion of value
created, where α = 1/2 in this example, but only up to their respective marginal
contributions. We think this is a fair division of the cost savings between the two
airlines.

II. The α-Procedure

We now define our general procedure for transferable-utility (TU) cooperative
games and show that the expected payoffs to the players are independent of α.3

This immediately implies that our general procedure yields the Shapley value,
since the two procedures are identical when α = 1.

3Brandenburger and Nalebuff (2023a) extend the α-procedure to NTU games.
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Fix a player set N . For each subset S ⊆ N , there is a real number v(S) which
is the value created by the players in S. We choose the normalization v(i) = 0
for all i, and we assume that v is super-additive; that is, if S ∩ T = ∅, then
v(S ∪ T ) ≥ v(S) + v(T ).

Let the coalition S without player i ∈ S be denoted by S\i. Denote the marginal
contribution of a player i in S to coalition S by mi(S) = v(S)−v(S\i). By super-
additivity, mi(S) ≥ 0. Let the number of players in coalition S be denoted by
|S|. We adopt the following labeling convention: for each coalition S, order the
players according to their marginal contributions to S, so that m1(S) ≤ m2(S) ≤
· · · ≤ m|S|(S). If two players have equal marginal contributions, then order them
arbitrarily. Note that this ordering will generally be different across different
coalitions S. To reduce notion, we often refer to mi(S) by mi when the meaning
is clear.

In our procedure, like the Shapley procedure, players join existing coalitions
in a random order. Unlike the Shapley procedure, the gains are split α: 1 − α
between the joiner and the existing coalition members, where 0 ≤ α ≤ 1. Instead
of summing up across all |N |! possible orderings, we focus on the |S| possible
orderings for the last step in how set S can be formed.

In the Shapley procedure, each player i ∈ S receives mi(S) when joining S\i
and receives zero in the other |S − 1| cases where a player k ∈ S\i, joins i in
S\k. On average, player i receives mi(S)/|S|. In our procedure, each player i ∈ S
receives αmi(S) when joining S\i and receives a share of (1 − α)mk(S) when
player k joins S\k.
It remains to specify the division of the amount (1 − α)mi among the |S| − 1

players in S\i. We divide the (1 − α)mi value equally among the players who
have a claim to it. To be precise, player i’s marginal contribution mi is divided
into i intervals (0,m1], (m1,m2], . . . , (mi−1,mi]. The kth interval mk −mk−1 is
then divided equally among the players with mj ≥ mk. There are |S| − k players
who have a claim to that interval. Thus, player j ∈ S\i gets its share on each
interval up to the smaller of its maximum claim mj and the total amount mi to
go around. Formally, player j receives:

(1) (1− α)

min(i,j)∑
k=1

mk −mk−1

|S| − k
.

In the first term of the sum, we introduced a fictitious player 0 who is not a
member of any coalition, and we set m0(S) = 0 for all S. This is done to simplify
the notation.

Start with player 1, who is the player with the lowest marginal contribution.
This player gets (1 − α)m1/(|S| − 1|) no matter who the outside player is. This
exhausts player 1’s claim, and the remaining value is split among one fewer play-
ers. Player 2 gets the same (1 − α)m1/(|S| − 1) as player 1 plus an additional
(1− α)(m2 −m1)/(|S| − 2) when the joiner is anyone other than player 1. Here,
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the amount m2−m1 is divided equally among the |S|−2 players whose marginal
contributions exceed m1. This procedure continues for all subsequent players
in S\i.
When the joining player is i = |S|, the procedure works just as before, except

that none of the players j ∈ S\|S| have a claim on the final interval of value
m|S| −m|S|−1. This amount therefore reverts to player |S|. We can see this last
step in equation (1), since for any player j ∈ S\|S|, we have min(|S|, j) = j < |S|
and so the interval m|S| −m|S|−1 does not appear in the sum for any player j.
The players in S\i have “priority” over the amount (1 − α)mi. These players

receive this full amount except when i = |S|, in which case there is a final interval
of value that reverts to i. Putting everything together, our procedure specifies
that when player i joins the coalition S\i, player j gets a payoff πj|i given by:

(2) πj|i(S) =


αmj for i = j < |S|;
αm|S| + (1− α)(m|S| −m|S|−1) for i = j = |S|;

(1− α)

min(i,j)∑
k=1

mk −mk−1

|S| − k
for i ̸= j.

We call this the α-procedure. A feature of this procedure is that no player
gets more than its marginal contribution to a coalition. In particular, a dummy
player gets zero.

THEOREM 1: In the α-procedure, the expected payoffs to all players are inde-
pendent of α in [0, 1] and are equal to the Shapley values.

PROOF: Fix a coalition S, and consider the expected payoff πj(S) to player j ∈ S.
This amount is the average over the amount j receives when joining S\j and the
amounts j receives across all |S| − 1 cases where a player i ∈ S\j joins player j
in an existing coalition. We can write:

(3) πj(S) =
1

|S|
∑
i∈S

πj|i =
1

|S|
∑
i∈S

πi|j =
mj(S)

|S|
.

The second equality holds because πj|i = πi|j , which follows from the fact that
the indices i and j enter entirely symmetrically into equation (2). The third
equality holds because, in the α-procedure, player j’s marginal contribution is
fully allocated across the players i ∈ S.
Equation (3) says that for every coalition S, the expected payoff to any player

is independent of α. The same is therefore true when summing up over coalitions.
But the α-procedure coincides with the Shapley procedure when α = 1. Thus, it
must also coincide with the Shapley procedure for all α. ■
We find this result quite surprising. A player’s Shapley value is a function only

of that player’s marginal contributions in the game. In the α-procedure, when
player i joins the coalition S\i, the payoff to player j depends, prima facie, on a
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set of marginal contributions, as in equation (2). However, in the expected value
calculation for j, the dependence on these other marginal contributions goes away,
leaving only the dependence on j’s marginal contribution.
The key observation is that what a player gives up when joining a coalition is

exactly offset by what that player gets when it is inside the coalition and each
of the other players joins. Take player 1. It gives up (1 − α)m1 when it joins,
but it gets back (1 − α)m1/(|S| − 1) a total of |S| − 1 times—once for each of
the other |S| − 1 players that joins it in S. The loss and gains exactly offset each
other. Player 2 gives up (1−α)m2 when it joins. It gets (1−α)m1/(|S|−1) when
player 1 joins it in S, and it gets (1−α)m1/(|S|−1)+(1−α)(m2−m1)/(|S|−2)
every time one of players 3 through |S| joins it in S. Again, what player 2 gives
up when joining it gets back when others join it. The sacrifices and gains exactly
cancel out for players 1, 2, and all the others.
We did not define the α-procedure with the goal of arriving at the Shapley

value. Instead, we looked at the problem of how to allocate a coalition’s payoff
among its members in a defensible manner. This makes the α-procedure more
complicated than the Shapley procedure. But it is a natural way to treat members
of a coalition equally, subject to respecting the marginal-contribution bound of
each player. And when the joiner is player |S|, so that no one has a claim on the
last interval, the procedure re-allocates this value back to player |S|.
Theorem 1 offers new insight into the Shapley value, which can now be seen as

arising with a more balanced split between the joiner and the coalition of players
being joined. The key assumption is not that the joiner gets everything, as in the
original Shapley procedure, but that the order in which players join coalitions is
random.

III. Uniqueness

Having established that the α-procedure leads to the Shapley value, it is natural
to ask if other procedures also do so.4 The answer is a qualified yes and we provide
one such example below. These other procedures, however, have properties that
may be considered unreasonable.
Consider a more general division of the 1 − α share of value among the mem-

bers of a coalition. As before, when player i joins S\i, we divide i’s marginal
contribution mi into i intervals (0,m1], (m1,m2], . . . , (mi−1,mi], all multiplied
by 1 − α. For each k ≤ i, we specify weights wjk(S\i) ≥ 0 that determine each
player j’s share of of the kth interval of value (mk−1,mk].
In our α-procedure, the weights, which we write as wα

jk(S\i), are given by

(4) wα
jk(S\i) =


1

|S| − k
for j ̸= i, k ≤ min(i, j);

1 for i = j = k = |S|;
0 otherwise.

4We thank Sergiu Hart for suggesting we consider this question.
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These weights are constant across i and j among the players with a claim to that
interval. In general, the weights could vary across i and j and not be restricted
to players j ≥ k. We now provide a three-player example with unequal weights
that leads to the Shapley value. Weights for the first interval wj1(123\i) are

w11(123\2) = 1, w11(123\3) = 0,

w21(123\1) = 0, w21(123\3) = 1,

w31(123\1) = 1, w31(123\3) = 0.

All other weights are given by the wα in Equation (4).
Focus on the first interval. When player 2 joins {13}, player 1 gets (1− α)m1

and player 3 gets 0. When player 3 joins {12}, player 1 gets 0 and player 2 gets
(1−α)m1. When player 1 joins {23}, player 2 gets 0 and player 3 gets (1−α)m1.
Across these three cases, each player gets (1−α)m1, the same as under the wα-

weights. All other payoffs match the wα results since the weights are the same.
Hence, the result is still the Shapley value. What is counterintuitive about this
example is the relationship between bargaining strength and allocations. Recall
that players are ordered by their marginal contributions, with player 1 having the
lowest contribution. And yet, when player 2 joins {13}, the weaker player 1 ends
up with the full amount of m1 while the stronger player 3 gets none of m1.
This counterintuitive aspect of this example is why we wrote a qualified yes

above. In a companion paper we show that the α-procedure uniquely leads to
the Shapley value among all weighing systems that satisfy Monotonicity and
Priority; see Brandenburger and Nalebuff (2023b). Monotonicity rules out the
example above. Stronger players should get at least as much as weaker players.
Specifically, players with greater marginal contributions should have weights on
each interval that are at least as big as players with lower marginal contributions.
The other axiom we employ is Priority, which gives the players j ∈ S\i prece-

dence in dividing up the (1−α)mi share. The very nature of the α: 1−α division
is that the players in the coalition being joined should be the ones dividing up
the (1−α)mi. The only case in which the players being joined do not receive this
full amount is when the largest marginal contribution among players in S\i falls
short of mi. This arises when i = |S|, and then no player j ∈ S\i has a claim on
the last interval of value m|S| −m|S|−1, so this last interval reverts to player |S|.

IV. A Reverse Procedure

Our α-procedure is similar to the Shapley procedure in that value is divided
step-by-step as players build up to the value v(N) of the grand coalition. Here,
we examine what happens if, instead, the players start with the grand coalition
and then consider what would happen if they fail to reach an agreement on
dividing v(N). In this “reverse” procedure, the players analyze potential break-
up scenarios and employ backward reasoning to calculate expected payoffs and
the implied division of v(N).
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Apart from intrinsic plausibility, there are two additional reasons for looking at
a reverse procedure. The reverse procedure naturally suggests a non-cooperative
implementation of the Shapley value, analogous to the one in Hart and Mas-
Colell (1996); see Section VI.B. Also, our reverse procedure suggests a new
generalization of the Shapley value, discussed in Section V.
In the reverse procedure, we think of the players as negotiating in the shadow of

an elimination process that operates if they do not reach an agreement regarding
the division of v(N). Specifically, if agreement is not reached, some player i ∈ N
is chosen at random to be at risk of being eliminated from the coalition and
thereby getting zero in subsequent divisions. This player i negotiates with the
other players over the payoff it will accept in order to remain in the coalition.
The reverse procedure determines this payoff by assigning player i an α share of
its marginal contribution to v(N), while the other players split the 1−α share of
this marginal contribution in exactly the same fashion as our earlier α-procedure.
The expected payoff πj(N) to player j is then given by:

(5) πj(N) =
1

|N |
∑
i∈S

[
πj|i(N) + πj(N\i)

]
,

where πj|i(N) specifies the α: 1−α split just as in Equation (2) (applied to S = N)

and πj(N\i) is the anticipated expected payoff to player j in the game without i.
To determine πj(N \ i), we repeat the hypothetical elimination process. A

player h ∈ S\i is chosen at random to be at risk of elimination. There is then an
α: 1 − α division of h’s marginal contribution just as before. This hypothetical
elimination process moves to the set of player S\{i, h} and continues in analogous
fashion until only one player remains. The resulting backward-recursion equation
that determines the allocation of value is based on the same |N |! potential payoffs
in our original α-procedure. Since the expected payoffs are identical whether run
forwards or backwards, the reverse procedure generates the Shapley value.

V. Generalized Shapley Values

Shapley (1953) and Kalai and Samet (1987) extended the original Shapley value
to incorporate weights that depend on the identity of a player. These weights can
be understood as influencing the order in which players join existing coalitions.
For example, suppose player A has weight 2 and player B has weight 1. Then,
the value v(AB) will be divided 2: 1 in favor of player A over player B. In effect,
the joining order BA is twice as likely as the order AB, so that player A gets
2/3×v(AB) in expected value, while player B gets only 1/3×v(AB) in expected
value.
Our generalized procedure suggests a different way to generalize the Shapley

value via weights. In the reverse procedure, we supposed that all players face an
equal chance of elimination at each stage. More generally, some players might
face a higher probability of elimination than others. For example, if a coalition
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breaks down, it might do so in the least expensive way, by which we mean that
the player(s) with the lowest marginal contribution would be the first to be at
risk of elimination.

Return to our runway example of Section I. In a weighted variant of that game,
if the coalition {ABC} breaks down, airline A would be the first to be at risk of
elimination. This is because less value is lost if airline A is eliminated as compared
with excluding airlines B or C. This line of argument leads to two equally likely
elimination orderings: A then B, or A then C. The resulting expected payoffs to
the airlines A, B, and C, are α, (1− α)/2 + 1, and (1− α)/2 + 1, respectively.

To see this, note that airline A would be at risk first and therefore earns a payoff
of α×1, namely, the share of marginal contribution that goes to the at-risk party.
Airlines B and C each receive (1−α)/2 from this stage, and they receive another
2α or 2(1 − α) depending on which of them is next at risk. Since each order of
potential elimination is equally likely, the expected value from this second stage
is 1. In the spirit of our reverse procedure, the three airlines would agree to this
division at the outset.

Unlike the case where all orders of elimination are equally likely, the expected
payoffs now depend on the parameter α. Airline A might do better or worse than
its Shapley value payoff of 2/3. This makes sense. If α = 1, it is advantageous to
be the first airline subject to elimination. If α = 1/2, so that the at-risk airline’s
marginal contribution is split equally, airline A gets 1/2, which is worse than
under the Shapley value.

We believe that our notion of a weighted Shapley value establishes a reasonable
range of allocations, which is determined by considering a range of reasonable
weights. If we fix α = 1/2 as a focal case, then, in the runway example, airline A’s
payoff lies in the interval [1/2, 2/3]. The best case for A arises under random order
of elimination, in which case A pays 1/3 of the first leg’s cost and therefore nets
2/3. The worst case for A arises when it would be the first to be eliminated. In
this case, airlines B and C have in effect pre-formed an alliance. Airline A is
negotiating with {BC}, and therefore pays 1/2 and nets 1/2.

The weighted procedure can also be run in a forward direction, like our original
α-procedure. Now, the first pair of airlines to form would be the one that creates
the largest value, namely, airlines B and C. Airline A joins last. The fact that
the ordering is the same in either direction is a consequence of there being only
three players in the game. The forward and reverse weighted procedures will
generally differ once there are four or more players. It is possible that the pair
of players that creates the largest value—and thus would join first in the forward
procedure—could include a player with the lowest marginal contribution to the
grand coalition, and would therefore be the first to be at risk in the reverse
procedure. In general, the payoffs depend both on the endogenous weights and
on whether the procedure runs forwards or in reverse.

Summing up, the weights we introduce depend on the players’ marginal con-
tributions and are therefore endogenous to the game. Note two features. First,
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our weights are anonymous. Thus, power arises from a player’s contributions in a
game, not from their identity. Second, we preserve an equal split in any two-player
negotiation. This follows because two players always have the same marginal con-
tribution in any two-person game. We think symmetry in the two-player case is
natural. Power in a negotiation should come from some asymmetry—which can-
not arise, at least endogenously, in a two-party negotiation. As we vary the
weights chosen, our generalized scheme predicts a range of potential outcomes,
where the natural boundary cases are a deterministic ordering (in order of in-
creasing marginal contributions) and a completely random ordering. Outcomes
outside this range may be seen as less reasonable.

VI. Discussion

A. Related Work

We noted the connection with O’Neill (1982) and Aumann and Maschler (1985).
In the division between the first two players when a third player joins, we follow
the principle of the divided cloth. In general, though, our analyses differ. Aumann
and Maschler obtain the nucleolus, while we obtain the Shapley value. In Aumann
and Maschler, the key step in extending the principle of the divided cloth to
any number of players is to impose a consistency axiom relating larger games
to smaller games (as is commonly done in cooperative game theory). Our α-
procedure can be thought of as an alternative extension of the principle of the
divided cloth to any number of players—an extension that imposes equal division
constrained by marginal contributions.
Owen (1977) proposed a modified game in which some coalitions are more likely

to form than others (or come pre-formed). He assumes that when a coalition {AB}
negotiates with player C, the gain is split evenly, which is akin to setting α = 1/2
in our formulation. The value v(AB) +mC(ABC)/2 is then divided between A
and B in a manner that preserves the payoff difference between A and B in the
Shapley value. Our approach is different since the Shapley value is an output not
an input in our analysis.
Aumann and Drèze (1974, Section 12.6) discuss the order in which coalitions

might form in a cooperative game. Some coalitions would be likely to form first
because of the large value they create for their participants. This is a similar
motivation to the non-random order of coalition formation (or breakup) presented
in Section V. Unlike our approach, Aumann and Drèze allow a coalition to break
up were another player to join the negotiation.

B. Non-Cooperative Implementation

There is a longstanding program to find non-cooperative implementations of
cooperative solution concepts. Gul (1989, 1999) initiated this program in the
case of the Shapley value, with further progress made by Winter (1994), Hart and
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Mas-Colell (1996), Hart and Levy (1999), Serrano (2005, 2021), and McQuillin
and Sugden (2016).
We can convert our reverse α-procedure into a non-cooperative game following

closely the approach in Hart and Mas-Colell (1996). The α-procedure provides
a division of value between the player at risk of exclusion and the other players.
The same division can be obtained via a suitably defined non-cooperative game.
A player i is selected to be at risk of exclusion. A player j (possibly i) is then
selected to be the proposer and make an ultimatum offer to the other players.
Player j claims the full marginal contribution of player i and offers everyone else
(player j included) their Shapley value in the game without i. In equilibrium,
such proposals are always accepted. Each player’s chance of being selected as the
proposer follows Equation (2) from Section II: the chance j makes the proposal
when i is at risk is πj|i(S)/mi. In particular, player i has an α chance of being
the proposer and the remaining 1 − α probability is allocated among the other
players (except for the reversion case). When all players have an equal chance of
being at risk of exclusion, this non-cooperative game is the analog to our reverse
α-procedure, and the stationary subgame-perfect equilibrium payoffs are equal
to the Shapley values. This game differs from Hart and Mas-Colell in two main
ways. First, player j knows which player i is at risk before proposing, and, second,
the proposer selection probabilities depend on the marginal contributions.

C. Conclusion

We introduce a new bargaining procedure that generalizes the original Shapley
(1953) procedure in sharing gains in an α: 1−α manner between the player joining
a coalition and the members of that coalition. Surprisingly, our α-procedure also
leads to the Shapley value. Though somewhat more complicated than the Shapley
procedure, we think the α-procedure is intuitive. It allows for a more balanced
split between joiner and coalition, and it allocates value among members of the
coalition equally, subject to respecting the marginal-contribution bound of each
player in the coalition.
The α-procedure also suggests a new solution concept that differs from the

weighted Shapley value in allowing endogenous weights that depend on marginal
contributions. This approach is motivated by the observation that some coalitions
might be more likely to form than others, depending on the value they create.
We believe that our α-procedure—especially the focal case of α = 1/2 rather

than the original Shapley case of α = 1—adds an important justification to the
use of the Shapley value as a recommended division of value to the players in a
game.
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