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Abstract

We revisit Kuhn’s classic theorem on mixed and behavior strategies
in games. We frame Kuhn’s work in terms of two questions in decision
theory: What is the relationship between global and local assessment
of uncertainty? What is the relationship between global and local
optimality of strategies?

This note is a homage to Kuhn’s classic theorem on the replacement of
mixed by behavior strategies in games [Kug50, Kup53]. It reframes Kuhn’s
work as two results in decision theory—i.e., in the context of trees involving
a decision maker and Nature. The motivation is to see the meaning of
Kuhn’s work at this basic level.

The decision-theoretic framing in this note is in accordance with the so-
called epistemic approach to game theory. Under the epistemic approach,
a game is a multi-player decision problem—more exactly, a collection of
decision problems, one for each player. In line with decision theory, a player
is assumed to form a (subjective) probability assessment over the strategies
chosen by other players in the game, and to choose an optimal strategy under
this assessment. The questions & la Kuhn are then: (a) the relationship
between global and local assessments; and (b) the relationship between
global and local optimality.

The epistemic approach is ‘the other way round’ from the traditional
approach to game theory. Under the traditional approach, we talk about
a mixed strategy of a player, not another player’s global assessment of the
first player’s deterministic choice of (pure) strategy. Likewise, we talk about
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a behavioral strategy of a player, not another player’s system of local as-
sessments about the first player. The mixed-behavioral framing is Kuhn’s,
of course.

In Section 5, we expand on the significance for Kuhn’s Theorem of taking
an epistemic perspective on games.

/\
[ Local assessment ] [ Global assessment ]
\_/

Under perfect recall and
non-triviality for Nature

~—
[ Local optimality } [ Global optimality }
\/

Under perfect recall and non-
triviality for the decision maker

FIGURE 1. Summary of results

Figure 1 is a summary of the two results we cover. Each result is in
two parts. For the first, we have: (i) Given a system of local probability
assessments by the decision maker, i.e., an assessment over Nature’s moves
at each of Nature’s information sets, there is a global assessment over Na-
ture’s strategies (“states”) that yields the same probability of each path
through the tree. (ii) If Nature has perfect recall and all chance nodes are
non-trivial, then, given a global assessment by the decision maker, there is
an equivalent system of local assessments. For the second result, we have:
(i) If a strategy of the decision maker is locally optimal, i.e., optimal at
each information set of the decision maker, then it is globally (“ex ante”)
optimal. (ii) If the decision maker has perfect recall and all decision nodes
are non-trivial, then, if a strategy is globally optimal, it is locally optimal.

There is also a sufficiency result (which follows from part (ii) of the first
result): Assume perfect recall and non-triviality for Nature. Then, it is
enough to know the system of local assessments associated with any global
assessment, to know which strategies are globally optimal. Putting this
together with part (ii) of the second result gives: Assume perfect recall and
non-triviality for both the decision maker and Nature. Then, to determine
if a strategy is locally optimal, it is enough to know the system of local
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assessments of the decision maker.
We acknowledge that much (all?) of the contents of this note may be
well known. Still, we hope that a self-contained presentation will be useful.

1 Decision Trees

A decision tree will be a two-person game in extensive form, where one
player is the decision maker and the other is Nature. We now give formal
definitions following Kuhn [Kuo50, Kup53] (also the presentation in Hart
[Ha,92]).

Definition 1.1. A (finite) decision tree consists of:

(a) A set of two players, one called the decision maker and the other
called Nature.

(b) A finite rooted tree.

(¢) A partition of the set of non-terminal nodes of the tree into two subsets
denoted N (with typical element n) and M (with typical element m).
The members of N are called decision nodes, and the members of
M are called chance nodes.

(d) A partition of N (resp. M) into information sets denoted I (resp. J)
such that for each I (resp. J):

(i) all nodes in I (resp. J) have the same number of outgoing
branches, and there is a given 1-1 correspondence between the
sets of outgoing branches of different nodes in I (resp. J);

(ii) every path in the tree from the root to a terminal node crosses
each I (resp. J) at most once.

Note: The focus of the well-known literature on the “paradox of the
absent-minded driver” (Piccione and Rubinstein [PigRu;97]) is on non-
Kuhn trees—specifically, trees that fail condition (d.ii) above. (See also
Isbell [Is57].) We consider only Kuhn trees.

For each information set I (resp. J), number the branches going out
of each node in I (resp. J) from 1 through #I (resp. #J) so that the 1-1
correspondence in (d.i) above is preserved.

Definition 1.2. A strategy (of the decision maker) associates with each
information set I, an integer between 1 and #1, to be called the choice of
the decision maker at I. Let S denote the set of strategies of the decision
maker. A state of the world (or state) associates with each information
set J, an integer between 1 and #J, to be called the choice of Nature at
J. Let © denote the set of states.
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Note that a pair (s,w) in S x  induces a unique path through the tree.

Definition 1.3. Fix a path p through the tree and a strategy s. Say p is
allowed under s if there is a state w such that (s,w) induces p.

Definition 1.4. Fix a path p through the tree and a state w. Say p is
allowed under w if there is a strategy s such that (s,w) induces p.

Definition 1.5. Fix a node n in N and a strategy s. Say n is allowed
under s if there is a state w such that the path induced by (s,w) passes
through n. Say an information set I is allowed under s if some n in [ is
allowed under s.

Definition 1.6. Say the decision maker has perfect recall if for any strat-
egy s, information set I, and nodes n and n* in I, node n is allowed under
s if and only if node n* is allowed under s.

Definition 1.7. Say a node n in N is non-trivial if it has at least two
outgoing branches.

Definition 1.8. Fix a node m in M and a state w. Say m is allowed
under w if there is a strategy s such that the path induced by (s,w) passes
through m. Say an information set J is allowed under w if some m in J
is allowed under w.

Definition 1.9. Say Nature has perfect recall if for any state w, infor-
mation set J, and nodes m and m* in J, node m is allowed under w if and
only if node m* is allowed under w.

Definition 1.10. Say a node m in M is non-trivial if it has at least two
outgoing branches.

Example 1.11. Figure 2 depicts a case of imperfect recall for the decision
maker. (The circular node belongs to Nature and the square nodes belong
to the decision maker.) Let s be the strategy that chooses B at information
set I (and b, say, at information set I’). Then node n is allowed under s
but node n* is not.

Example 1.12. Figure 3 is the standard example of imperfect recall for
Nature. Let w be the state that chooses U at information set J (and w, say,
at information set J’). Then node m is allowed under w but node m* is
not.

Define a relation of precedence on information sets I of the decision
maker, as follows: Given two information sets I and I’, say that I pre-
cedes I’ if there are nodes n in I and n’ in I’ such that the path from the
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FIGURE 2.

FIGURE 3.

root to n/ passes through n. It is well known that if the decision maker
has perfect recall and all decision nodes are non-trivial, then this relation
is irreflexive and transitive, and each information set I has at most one
immediate predecessor. (Proofs of these assertions can be constructed from
arguments in Wilson [Wig72]. See also the appendix to this note.) Of
course, the parallel statements hold for Nature.

In [Kuph3], Kuhn observes that perfect recall implies that a player re-
members: (i) all of his choices at previous nodes; and (ii) everything he
knew at those nodes. The following two lemmas formalize these observa-
tions. (The proofs are in the appendix.) Again, parallel statements hold for
Nature. (Lemma 1.13 will be used later.)

Lemma 1.13. Suppose the decision maker has perfect recall and all deci-
sion nodes are non-trivial. Fix information sets I and I’, and strategies s
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and s’. Suppose that I’ is allowed under both s and s’, and I precedes I’.
Then I is allowed under both s and s’, and s and s’ coincide at I.

Continuation of Example 1.11. Let s choose T" at I, and s’ choose B
at I. Then I’ is allowed under both s and s’, as is I. But s and s’ differ at
I. So Lemma 1.13 fails without perfect recall. In words, the decision maker
forgets at I’ whether he chooses T or B at I.

Next, write
[I] = {w: I is allowed under w}.

Lemma 1.14. Suppose the decision maker has perfect recall and all deci-
sion nodes are non-trivial. Fix information sets I and I’. If I’ succeeds I,
then [I'] C [I].

Continuation of Example 1.11. We have [I] = {D} and [I'] = {U, D}.
So Lemma 1.14, too, fails without perfect recall. In words, the decision
maker knows at I that Nature doesn’t choose U, but forgets this at I’.

A brief comment on the literature on these ‘structural’ aspects of per-
fect recall. Bonanno makes a nice distinction between “action” and “choice”
[Bog04]. (The same action can be taken at different information sets.) He
offers definitions of “knowing the actions you previously took” and “know-
ing what you previously knew”, and shows that together these conditions
characterize perfect recall. Ritzberger provides several characterizations of
perfect recall [Rip99]. Van Benthem studies game trees as structures for log-
ical languages, and, in particular, provides a dynamic epistemic logic-based
axiomatization of games satisfying perfect-recall like conditions [vB01lal.
Also related are the temporal logics in Halpern, van der Meyden, and Vardi
[HagvMVa04]. See [Boy04, Section 6] for further discussion of the literature.

2 Global and Local Probabilities

We now define the global and local probabilities on the tree, and then state
Kuhn’s Theorem.

Definition 2.1. A global probability measure on the tree is a probability
measure on the set of states €.

Definition 2.2. A system of local probability measures on the tree asso-
ciates with each information set J of Nature, a probability measure on the
set of choices at .J.

Fix a global measure o, and a system of local measures 7(-; J). Fix also a
path p through the tree. Let J; be the first information set of Nature crossed
by p, and let j; be the choice at J; that lies on p. Define Jo, jo, ..., JK, jK
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similarly, where Jx is the last information set of Nature crossed by p, and
Jk is the choice at Jx that lies on p. (Note this is well defined, by condition
(d.ii) of Definition 1.1. Also, we don’t indicate the dependence of the indices
1,..., K on p, but no confusion should result.)

Definition 2.3. The global probability of p is
Ap;0) =o({w : p is allowed under w}).

Definition 2.4. The local probability of p is
K
ppsm(sJi),s. ..o H (k3 Jk)-

Continuation of Example 1.12. To practice these definitions, let o
assign probability 1/2 to (U,u) and probability 1/2 to (D,d). Also, let
w(U;J) = n(D;J) = 1/2, and 7(u; J') = w(d; J') = 1/2. Suppose p is the
path induced by (U,u). Then the global probability of p is A(p;o) = 1/2,
and the local probability of p is u(p; w(-; J), w(;J')) =1/2 x 1/2 = 1/4.

We now state Kuhn’s Theorem in the form of the following two results,
and give proofs in the notation of this note.

Theorem 2.5. Fix a system of local measures 7(-;J). There is a global
measure o such that for any path p,

Ap;o) = pp; (5 J1), . 7(s5 JK)).

Proof. It will be convenient to write  as a product space [[; C(J), where
C(J) denotes the set of choices at information set J. Given a state w,
write w(J) for the Jth coordinate of w, i.e., the choice w makes at J. Set
o(w) =1, 7(w(J);J). This is readily seen to define a probability measure
on .
Now fix a path p, and let Ji,7j1,...,JK,jx be defined as earlier. For
k=1,....K, let
Ak = {w : w(Jk) = ]k}

Note that o(Ay) = 7(jk; Jx). The set of w such that p is allowed under w
is ﬂszlAk, and, since ¢ is a product measure,

K K K
U(ﬂ Ak) =[] o(4r) = [ 7Gr; Jo),
k=1 k=1 k=1

as required. Q.E.D.
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We need one more definition, used in the proof of the next result.

Definition 2.6. Fix a global measure ¢ and an information set J. The
localized probability measure at J is given by

o({w : J is allowed under w, and w(J) = j})

n(j;J,0) =

3

o({w : J is allowed under w})

if c({w : J is allowed under w}) > 0. If o({w : J is allowed under w}) =0,
define 7(+; J, o) arbitrarily.

Theorem 2.7. Suppose Nature has perfect recall and all chance nodes are
non-trivial. Fix a global measure o. There is a system of local measures
7(+; J) such that for any path p,

u(p;ﬂ-(';Jl)a"'?ﬂ—(';JK)) = /\(p70)
Proof. Fix a path p and J1,j1,...,JK, jik as earlier. Let

B = {w: p is allowed under w},
Cr = {w: Ji is allowed under w, and w(Jx) = jx },

Dy, = {w: Jy is allowed under w},

fork=1,..., K.

We show that for £ = 1,...,K — 1, C, € Dy41. Suppose p passes
through node m in J;. Fix w such that Jj is allowed under w. Then by
perfect recall, node m is allowed under w. That is, there is a strategy s such
that the path induced by (s,w) passes through m. Let (s’,w’) induce the
path p. Then s and s’ coincide at all information sets of the decision maker
crossed by p from the root to m. Indeed, we can take s = s’. We know that
W'(Jg) = ji. Therefore, if w(Jx) = jk, the path induced by (s’,w) coincides
with the path induced by (s’,w’), from the root to Jx4;. Certainly then,
Ji+1 is allowed under w, as required.

We next show that for k =1,..., K — 1, Dgq1 C Ck. Let (s',w’) be as
above, so that certainly Jiy1 is allowed under w’. Fix w such that Jgy1 is
allowed under w. Since Jj precedes Ji4+1, Lemma 1.13 (stated for Nature)
implies that: (i) Jj is allowed under w; and (ii) w and w’ coincide at Ji,
i.e., w(Jk) = .]k

We now have that for K = 1,..., K — 1, Cx = Dgy1. By definition,
Cy, C Dy, for each k. This shows that the Cj’s are a decreasing sequence.

Given a global measure o, define a system of local measures 7(+;J) by
setting 7 (+; J) = 7 (5 J, 0).

Note that C'r = B, since J is the last information set of Nature crossed
by p. It follows that if A(p;o) = o(B) > 0, then ¢(C%) > 0 and o(Dy) > 0
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for each k. We then have

a(Ck)
o(Dy)

K
pps (5 1), w5 0x) = ] (2.1)
k=1

But the numerator of each term in (2.1) cancels with the denominator of
the next term, leaving

pp; (s d),..., (5 Jk)) = -~

We already have o(Ck) = o(B). Also, D1 = , since Jp is the first
information set of Nature crossed by p, so o(D1) = 1. This establishes that

p(p; (5 1), ... (5 Jk)) = 0(B) = A(p; 0), (2.2)

as required.

Now suppose A(p;0) = o(B) = 0. If 0(Dy) > 0 for each k, we still get
(2.1), from which we get (2.2), and so u(p;n(-;J1),...,7(;Jk)) = 0, as
required. We have o(D;) = 1, so the remaining case is that o(Dy) = 0 for
some k =2,..., K. Choose the minimum such k. Then o(Dj_1) > 0. Also
U(Ck_l) = 0, since Ck—l = Dk. Thus W(jk_l; Jk—l) = U(Ck_l)/U(Dk_l) =
0, so that u(p;7(:;J1),...,7(-; Jk)) = 0, as required. Q.E.D.

Continuation of Example 1.12. Theorem 2.7 fails without perfect recall.
To see this, let o assign probability 1/2 to (U,u) and probability 1/2 to
(D,d), as before. Then, in particular, we need 7(U;J) x w(u;J') = 1/2,
w(U;J) x 7n(d; J') =0, and 7(D; J) x w(d; J') = 1/2, which is impossible.

3 Global and Local Optimality

Next we define global and local optimality of a strategy of the decision
maker.

Definition 3.1. A payoff function (of the decision maker) is a map V :
S x Q — R satisfying V(s,w) = V(s',w’) whenever (s,w) and (s’,w’) induce
the same path.

Definition 3.2. Fix a probability measure o on (2. A strategy s is globally
optimal under o if

Y oWV(s,w) = > ow)V(rw)

we weN

for every other strategy r € S.
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FIGURE 4.

Definition 3.3. Fix a probability measure ¢ on ). Fix also a strategy s
and an information set I that is allowed under s and satisfies o([I]) > 0.
Then s is locally optimal at I under o if

Y oWwlV(s,w) = Y oWV (r,w)

weN we

for every other strategy r € S under which I is allowed. Strategy s is locally
optimal under o if for every information set I that is allowed under s and
satisfies o([I]) > 0, it is locally optimal at I under o.

In words, a strategy is globally optimal if it is expected-payoff maxi-
mizing under the (unconditional) measure o. It is locally optimal if it is
expected-payoff maximizing under each conditional measure o(w|[I]) that
is defined (and where [ is allowed under the strategy).

Example 3.4. Figure 4 is Figure 2 with payoffs added for the decision
maker. Let o assign probability 2/3 to U and 1/3 to D. Then Tt, Bt, Tb,
and Bb yield expected payoffs of 4/3, 5/3, 2/3, and 1/3, respectively—so
Bt is (uniquely) globally optimal under o.

As noted before, [I] = {D} and [I'] = {U,D} = Q. So, o([I]) > 0 and
a([I']) = 1. Also, both T and I’ are allowed under all four strategies. It
follows that local optimality at I’ is the same as global optimality. At I, we
find that T't, Bt, Th, and Bb yield conditional expected payoffs of 0, 1, 2,
and 1, respectively—so, in fact, no strategy is locally optimal under o.
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Theorem 3.5. Fix a probability measure o on 2. If a strategy s is locally
optimal under o, then it is globally optimal under o.

Proof. Partition Q into cells Iy, I1,...,I;, where w € I, for some ¢ =
1,...,L, if I, is the first information set of the decision maker allowed
under w, and w € Iy if there is no information set of the decision maker
allowed under w.

Write
L

S o@)Vis,0) = o) 3 ol L)V (s,w),

weN £=0 we
where we take o(-|[I]) to be arbitrary if o([I;]) = 0. Suppose s is locally
optimal under o, but not globally optimal under o. Then there must be
another strategy r such that

Z ow)V(r,w) > Z o(w)V(s,w).
we weN

But
L

Y oWVrw) =Y o(ll]) Y oWV (rw),

weN £=0 weN
so there must be £ = 0,..., L such that o([I;]) > 0 and

> oIV (rw) > > ow|I)V(s,w).

we weN

Note that in fact 1 < ¢ < L, since, on Iy, V(-,w) is independent of the
strategy. Since it is a first information set of the decision maker, I, must be
allowed under r. This implies that s is not locally optimal under ¢ at I, a
contradiction. Q.E.D.

Theorem 3.6. Suppose the decision maker has perfect recall and all deci-
sion nodes are non-trivial. Fix a probability measure o on €. If a strategy
s is globally optimal under o, then it is locally optimal under o.

Notes: (i) By finiteness, a globally optimal strategy always exists under
any 0. So Theorem 3.6 implies, in particular, that under the given condi-
tions a locally optimal strategy also exists under any o. (ii) Kline [Kl;02]
contains a stronger result, based on a weakening of perfect recall.

Proof. Suppose that s is globally optimal and that, contra hypothesis, there
is an information set I allowed under s and satisfying o([I]) > 0, such that

Y oWV (s,w) < Y owl)V(r,w) (3.1)

weN weN
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for some other strategy r € S under which I is allowed.

Construct the strategy ¢ that coincides with r at I and all succeeding
information sets of the decision maker, and coincides with s elsewhere.

We first show that if w € [I], then V(q,w) = V(r,w).

From w € [I], there is a node n; in I and a strategy s; such that the
path induced by (s1,w) passes through n;. Since I is allowed under s, there
is a node ns in I and a state wo such that the path induced by (s,ws) passes
through no. By perfect recall, there is then a state ws such that the path
induced by (s,ws) passes through ny. Now consider the information sets I’
crossed by the path from the root to ny. Since the paths induced by (s1,w)
and (s,ws) both pass through nq, the strategies s; and s must coincide at
these sets. Similarly, consider the information sets J crossed by the path
from the root to my. Since the paths induced by (s1,w) and (s,ws) both
pass through nq, the states w and w3 must coincide at these sets. Therefore,
the path induced by (s,w) must pass through n;.

We can repeat the argument with strategy r in place of strategy s, to
conclude that the path induced by (r,w) must also pass through n;. But
then, using the definition of strategy ¢, the paths induced by (¢,w) and
(r,w) must be the same. Thus V(gq,w) = V(r,w), as required.

Next, we show that if w € Q\[I], then V(¢,w) = V(s,w). From w €
Q\[I], the path induced by (s,w) does not cross I, and therefore does not
cross any information set of the decision maker that succeeds I. Consider
the information sets I’ that are in fact crossed by the path induced by (s, w).
By construction, the strategies ¢ and s coincide at each such I’. Thus the
paths induced by (¢,w) and (s,w) are the same, and so V(q,w) = V(s,w),
as required. Write

3 o@)V(g,w)

weN

=o([1]) Y o)V (g,w) +o(Q\[1]) Y oWV (g,w),

weN wel
where o(-|Q\[I]) is arbitrary if o(Q\[I]) = 0. We have
3" o)V (g,w)

weN

= o(I]) Y oIV (r,w) + a(@\[1]) Y o(@|Q\I])V (s,w)

weN we
> o([1]) Y ow|[IDV (s, w) + o (Q\[1]) D o(wQ\[T])V (s,w)
we weN

= o(w)V(s,w),

weN
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where the inequality uses (3.1) and o([I]) > 0. But this contradicts the
global optimality of s. Q.E.D.

Continuation of Example 3.4. Theorem 3.6 fails without perfect recall
(for the decision maker). Indeed, we saw that only Bt is globally optimal,
but it is not locally optimal at I.

4 A Sufficiency Result

We now establish a sufficiency result: Assume perfect recall and non-triv-
iality for Nature. Then, it is enough to know the localized probabilities
associated with any probability measure, to know which strategies are glob-
ally optimal.

First some notation. As in Section 2, given a path p, write J; for the
first information set of Nature crossed by p,. .., Jg for the last information
set of Nature crossed by p (and suppress the dependence on p). Also, in
this section it will be helpful to write W (p) for the payoff V(s,w), if (s,w)
induces the path p.

Definition 4.1. Fix two (global) probability measures o and 7 on Q. Say
o and 7 are locally equivalent if for each path p, A(p;o) > 0 if and only
if A(p;7) > 0, and, in this case,

w(p;w(5J1,0), (5 Ik, 0)) = plps (5 g1, 7)o w(5 Tk, 7))

In words, two measures are locally equivalent if they give rise to the same
localized probability of each path that gets positive (global) probability.

Example 4.2. In the tree in Figure 5, let o assign probability 1/2 to (U, u)
and probability 1/2 to (D, d), and 7 assign probability 1/4 to each of (U, u),
(U,d), (D,u), and (D, d). It can be checked that o and 7 are locally equiv-
alent.

Here is the sufficiency result:

Theorem 4.3. Suppose Nature has perfect recall and all chance nodes are
non-trivial. Let o and 7 be probability measures on ) that are locally
equivalent. Then for any strategy s,

Y o@V(s,w) =Y T(w)V(s,w).
we we
Proof. Write
D ow)V(s,w) = > > o(W)W(p). (4.1)

weN {p: p is allowed under s} {w: (s,w) induces p}
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FIGURE 5.

Now, if (s,w) induces p, then certainly p is allowed under w. Conversely,
suppose p is allowed under w. That is, there is an s’ such that (s',w) induces
p. Suppose also that p is allowed under s. That is, there is an w’ such that
(s,w’) induces p. It follows (by arguing forwards along the path p) that
(s,w) must also induce p. Using the definition of A(p; o), this establishes
that (4.1) can be rewritten as

Y ow)V(s,w) = > Ap; o)W (p). (4.2)
we {p:p is allowed under s}
By the same argument we can write
Do rw)V(s,w) = > Ap; T)W (p)- (4.3)
weN {p:p is allowed under s}
Fix a path p. By the proof of Theorem 2.7,
Ap;o) = wlp; (5 J1,0), .., 7w(s Ik, 0)), (4.4)
Aps7) = plp;w(3J1,7), o w(5 Tk, 7)) (4.5)

Fix a path p. Using local equivalence, we have either: (i) A(p;o) =
Ap;T) =0, or (ii) A(p; o) > 0 and A(p;7) > 0. In case (ii), A(p; o) = A(p; 7),
by (4.4), (4.5), and local equivalence again. Thus (i) and (ii) together
establish that (4.2) and (4.3) are equal, as required. Q.E.D.

Corollary 4.4. Suppose Nature has perfect recall and all chance nodes
are non-trivial. Fix probability measures ¢ and 7 on  that are locally
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equivalent. Then a strategy s is globally optimal under ¢ if and only if it is
globally optimal under 7.

Continuation of Example 4.2. Theorem 4.3 and Corollary 4.4 fail with-
out perfect recall (for Nature). The measures o and 7 as above are locally
equivalent. Yet T yields an expected payoff of 0 under o, and an expected
payoff of 3/2 under 7. (So B is globally optimal under o, while T is globally
optimal under 7.)

5 Discussion

Corollary 4.4 and Theorem 3.6 can be put together as follows: Assume
perfect recall and non-triviality for both the decision maker and Nature.
Then, to determine if a strategy is locally optimal, it is enough to know the
localized probabilities of the decision maker.

For (even local) optimality, then, the analyst need only know how the
decision maker sees the tree locally. We don’t need to know the decision
maker’s global assessment of the tree.

But this does assume perfect recall and non-triviality. Perfect recall
for the decision maker has a clear interpretation as a memory requirement
(refer back to the end of Section 1 and also the references there). But what
does perfect recall for Nature mean?! We’ll give an answer for the game
context, as analyzed under the epistemic approach.

For the application of the decision tree set-up (Definition 1.1) to a game,
the decision maker is to be thought of as one player, Ann say. All the re-
maining players—Bob, Charlie, ...—are grouped together as Nature. This
is because, under the epistemic approach, the strategies chosen by Bob,
Charlie, ... are jointly uncertain as far as Ann is concerned, and so subject
to joint probability assessment.

When, then, might Nature have perfect recall? One case is if there is just
one other player, Bob, and he has perfect recall. The situation is different
if there are two or more other players, even if each of these players has
perfect recall. For example, suppose in Figure 5 that Ann chooses T or B,
Bob chooses U or D, and Charlie chooses u or d. Then Bob and Charlie
each has perfect recall, but if Ann assigns probability 1/2 to (U,u) and
probability 1/2 to (D, d), there is no equivalent local assessment.

We could require Ann’s global assessment to be a product of a global
assessment of Bob’s strategy and a global assessment of Charlie’s strategy.
Then, working with each assessment separately, we could find an equivalent
local assessment. But an independence requirement like this is not in the
spirit of the epistemic approach to games, which treats correlations as the
norm.

1 T am grateful to a referee for asking this question.
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Of course, there will be special cases where ‘overall’ perfect recall still
holds. (An obvious one is if the game has perfect information.) But, in
general, we should work with global not local assessments by the players.

Appendix

Lemma A1l. Suppose the decision maker has perfect recall and all decision
nodes are non-trivial. Fix an information set I, nodes ny and ns in I, and
an information set I’ containing a node n3 on the path from the root to n;.
Then there is a unique node in I’ (not necessarily distinct from ng) lying
on the path from the root to no.

Proof. First note that by part (d.ii) of Definition 1.1, there cannot be more
than one node in I’ lying on the path from the root to ns.

Now suppose, contra hypothesis, there is no node in I’ lying on the
path from the root to ns. Let ¢ denote the choice at ng that lies on the
path to m1. By non-triviality, there is a choice d, different from c, at I'.
Construct a strategy s as follows: (i) at I’, let s specify the choice d; (ii)
at an information set crossed by the path from the root to no, let s specify
the choice that lies on this path; (iii) at any other information set, let s be
arbitrary. (Note that, by hypothesis, the information set I’ does not fall
under (ii), so s is well defined.) By construction, the node ng is allowed
under s, while n; is not allowed under s. This contradicts perfect recall.

Q.E.D.

Lemma A2. Suppose the decision maker has perfect recall. Fix an in-
formation set I and nodes n; and ny in I. Fix also an information set I’
containing nodes n3 and n4 (not necessarily distinct) where ng lies on the
path from the root to n1, and n4 lies on the path from the root to no. Then
the choice at ng that lies on the path to ny is the same as the choice at n4
that lies on the path to ns.

Proof. Let ¢ be the choice at ns that lies on the path to n;, and let d be the
choice at n4 that lies on the path to ns. Suppose, contra hypothesis, that
¢ # d. Construct a strategy s as follows: (i) at an information set crossed by
the path from the root to ns, let s specify the choice that lies on this path;
(ii) at any other information set, let s be arbitrary. Note that s specifies d
at I’. It follows that ng is allowed under s, while n; is not allowed under s.
This contradicts perfect recall. Q.E.D.

We use Lemmas Al and A2 in the proofs below of Lemmas 1.13 and
1.14 in the text. We also note that Lemma Al, together with part (d.ii)
of Definition 1.1, easily implies the facts stated in Section 1: The prece-
dence relation on information sets is irreflexive and transitive, and each
information set I has at most one immediate predecessor.
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Proof of Lemma 1.13. Since I’ is allowed under s, there is a node nf in I’
and a state w; such that the path induced by (s,w1) passes through nj.
Likewise, since I’ is allowed under s, there is a node n/, in I’ and a state wo
such that the path induced by (s, w2) passes through nf. Since I precedes
I, there are nodes n in I and n’ in I’ such that the path from the root to
n' passes through n.

Lemma Al then implies that there is a node n; in I (not necessarily
distinct from n) lying on the path from the root to nj. That is, the path
induced by (s,w1) passes through ny. This establishes that I is allowed
under s.

Likewise, Lemma A1 implies that there is a node ny in I (not necessarily
distinct from n) lying on the path from the root to n4. That is, the path
induced by (s’,ws) passes through my. This establishes that I is allowed
under s’.

Lemma A2 implies that the choice at n; that lies on the path to nj is
the same as the choice at ng that lies on the path to n}. Thus s and s
coincide at I. Q.E.D.

Proof of Lemma 1.14. Consider a state w in [I']. By definition, there is a
node n’ in I’ and a strategy s such that the path induced by (s,w) passes
through n'.

Since I precedes I’, there are nodes n; in I and ny in I’ such that the
path from the root to ns passes through n;.

Lemma Al then implies there is a node n3 in I (not necessarily distinct
from n;) such that the path from the root to n’ passes through ng. That is,
the path induced by (s,w) passes through ns. Thus w lies in [I], as required.

Q.E.D.
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