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We show how quantum entanglement may be able to improve the joint performance of a system of telescopes, cameras,
or other sensors which are widely separated in space. The improvement is relative to any observation strategy that
uses only classical coordinating devices. Potential application domains include space-based observatories and multi-
frequency interferometry.

I. INTRODUCTION

Distributing a set of astronomical observatories across
a vast region of space (e.g., as in the proposed LISA
constellation1,2) has the potential to capture hit-or-miss events
in great detail via appropriate choices of complementary po-
sitioning, instruments, and settings.

Some of the most interesting astronomical events can be
very quick and unpredictable. For instance, the final moments
in a merger of two black holes are detected by gravitational
sensors such as LIGO as a brief “chirp”3,4. Furthermore, for
supernova events there is very little information on the initial
phase of that process because it is rare that a telescope would
be already pointed in the right direction5,6,7.

If more than one sensor is active on a target the event can
often be resolved in much greater detail, sometimes exploit-
ing the offset between the different views, as with interferom-
etry techniques, and sometimes exploiting the joint informa-
tion that results from combining the output of complementary
sensor types8,9.

Ideally, then, when multiple observatories become aware of
a new event, they will follow a coordinated observation strat-
egy. However, depending on the timeline of each new event,
communication among observatories may be too slow to be
useful. In this case, the best those observatories can do is to
resort to optimal autonomous decisions based on their local
information. We represent this decision problem faced by a
set of distant observatories as a team game. We then consider
a few sample scenarios, and identify the optimal performance
that can be obtained with classical observation strategies. We
go on to show that, in those scenarios, the availability of a
shared quantum state enables the observatories to coordinate
their choices in a way that strictly improves on their optimal
uncoordinated performance.
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II. OBSERVATORIES WITH RANDOM ORIENTATION

We assume that there are two identical observatories, each
randomly (i.e., uniformly and independently) oriented with
respect to the other along a common plane, and each with a
hemispherical field of view. Each observatory (1 and 2) has a
choice of two frequency bands (R and G) that it can alterna-
tively select at any time.

We also assume that the payoff from a joint observational
strategy depends on the join (union) and meet (intersection)
of the two fields of view. Specifically, when the two obser-
vatories look in opposite directions, then they receive a joint
payoff of 1 in case they use the same frequency band (e.g., be-
cause the two images can be stitched), and 0 otherwise. When
they look in the same direction, they receive a payoff of 0 if
using the same frequency band (e.g., because the two images
are redundant), and 1 otherwise (e.g., because multi-band ob-
servations of the same target are more informative). When
the overlap (meet) is a fraction p = cos2(θ/2) of the field of
view, then the payoff is the convex combination of the two
limit cases with weights p and 1− p.

A (deterministic) strategy for observatory i (for i = 1,2) is a
function returning a choice of frequency for each orientation.

To find the maximum payoff that the two observatories
can obtain, we conceive of the situation as a team decision
problem10. Using arguments from game theory, we can then
classify this team problem as a Kuhn tree with imperfect recall
and conclude that the two observatories cannot improve their
joint performance by making use of any classical coordinating
device (i.e., any classical shared randomness)11,12,13. So, we
can concentrate on finding the best payoff under deterministic
strategies.

Let α and β be the two angles at which the observatories are
oriented with respect to a predetermined common direction.
Also, let f (α) and g(β ) be two Boolean functions, represent-
ing the respective strategies of the two observatories, depend-
ing on the angle at which they are oriented.

The expected payoff is then given by
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|1− f (α)−g(β )|cos(α −β )dα dβ .

We constrain f to take the value 1 on one semicircle and the
value 0 on the opposite semicircle. We constrain g similarly
with respect to a (different) semicircle. It can then be shown
that the maximum value of this second integral is 2/π2, ob-
tained by choosing the semicircles for f and g to be out of
phase by π . The highest expected payoff obtained with deter-
ministic strategies is therefore 1/2+2/π2 ≈ 0.7026.

Observe that such optimal strategies can only be imple-
mented if there exists a common predetermined direction,
from which the two angles are computed. Hence, achieving
the classical bound requires absolute positioning capabilities
at the two sites.

We now assume that the two observatories share a quantum
state, namely, a Bell state pair14,15, which has the property that
its two quantum bits (qubits) always return opposite answers
if measured in the same basis. If the two qubits are observed in
different bases, then their outcomes agree with probability 1−
cos2 φ , where φ is the relative angle between the two bases16.

In this scenario, the action taken by each observatory can be
made dependent on the outcome of measurement of its respec-
tive qubit. Consider the following strategy: Each observatory
measures its respective qubit in the basis defined by the direc-
tion at 1/2 of its current angle, and its orthogonal complement
along the plane. If the outcome is 0 then the chosen action is
R, otherwise it is G. In this case the two outcomes agree with
probability 1−cos2(θ/2), where θ = α −β is the relative an-
gle at which the two observatories are oriented. Therefore, the
expected payoff is now given by
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= 0.75,

a strict improvement over the classical bound.

III. N OBSERVATORIES WITH COSTLY ACTIONS

Consider a set-up with N (pairwise distant) observatories.
The current state of each observatory belongs to a set X (in-
cluding all possible combinations of current positioning, in-
struments, and settings, as well as the output from recent ob-
servations). There is a set of (mutually exclusive) actions A
available to each observatory (e.g., a choice of positioning,
instruments, and settings) which may be taken by an observa-
tory as a function of its current state.

We assume that, whenever a new event E occurs, it will
be detected with probability px(E) by an observatory in state
x ∈ X . We further assume that detections are independent.
There is a cost c(a) associated to each action a ∈ A. The
overall team payoff is a function of the combined output of
different observatories. The payoff function can be nonlin-
ear: For instance, tracking the same event in complementary
frequency bands could reveal additional detail, and hence be
more valuable compared with tracking it all in the same band.
Moreover, two or more images in the same frequency band
could sometimes be redundant (depending, for instance, on

the relative position of the observatories with respect to the
event), while other times they could be strictly more valuable
than a single one.

As before, this situation can be conceived of as a Kuhn tree
with imperfect recall, and the observatories cannot, therefore,
benefit from classical coordinating devices13. There is then at
least one optimal classical strategy that is purely deterministic.

We now give two examples of situations where the best per-
formance that the observatories can achieve under a classi-
cal strategy is strictly lower than the performance achievable
when the observatories share a multipartite quantum state, and
make their choices of action contingent on the outcome of
measurement on their respective qubit.

Specifically, let us consider N observatories, where each
observatory can be in one of several possible states. For ex-
ample, there may be exactly one of three types of target in its
field of view. Each observatory can take a costly action (e.g.,
actively tracking a target) or a costless one (e.g., no tracking).
In reality, actively tracking a target is only part of the full ac-
tion set of a telescope, together with a choice of instruments
and settings, but for simplicity in our model we concentrate
on only two of those actions: tracking or not.

We further suppose that each observatory can be in any of
the possible states with equal probability, and independently
of other observatories.

Next, we assume that the payoff from observing any given
event, in the case that k observatories happen to track it, is
given by v− kp, where p < v < 2p. Thus, it is always worth-
while tracking an event, but only via a single observatory and
not more. We define s = v− p to be the net benefit from a sin-
gle observation. We can therefore write the (overall) payoff as
s− (k−1)p.

Finally, we assume that the payoff from tracking m dif-
ferent events simultaneously via k observatories is given by
mv− kp+ εm, where ε1 = 0 and εm (for m > 1) is a strictly
positive and increasing payoff contribution that reflects com-
plementarity (e.g., the additional value of combining syn-
chronous observations of multiple targets).

If the cost of redundancy is sufficiently high, that is, if
p >> s,εm, then the best deterministic (and hence, best classi-
cal) strategies all involve assigning separate players to become
active on different types of event.

With two observatories and two types of event, the best de-
terministic (and hence, the best classical) strategy is therefore
for each observatory to become active on a separate type. With
three types of event, the best classical strategy is to make one
observatory active for a single type of event, and the other ac-
tive on the two remaining ones. In the latter case, the two
observatories generate an expected payoff of

s+(8/36)ε2.

This payoff can be strictly improved on if the two observa-
tories share a quantum state, and they are able to make mea-
surements on one or more quantum bits (qubits) before de-
ciding which action to take given the type of event that has
occurred.

In particular, let us assume that the two observatories share
a Bell state pair of qubits, so that, when measured in the same
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basis, the two qubits always give opposite outcomes. Now, be-
fore deciding whether or not to track a new object of a given
type, an observatory can measure its respective quantum bit in
a basis corresponding to the type of event, and make its choice
of action contingent on the outcome. Specifically, measuring
their respective qubits at 0, 120, and 240 degrees, depend-
ing on the realized type, allows the two observatories always
to take opposite actions if measuring in the same direction,
while taking the same action with probability 1− cos2(2π/3)
if measuring in different directions. The best expected payoff
generated by such quantum-assisted strategies is given by

s+(9/36)ε2,

which strictly exceeds the classical bound.
With three observatories and three types, the best classical

strategy is once again to appoint each player to become active
on a different type of event. With three players and four types,
the best classical strategy assigns a single type to each obser-
vatory, except for one observatory that also becomes active on
an additional type. The best classical payoff in this case is
given by

s+(56/256)ε2 +(8/256)ε3.

A quantum-assisted strategy which generates a strictly
higher payoff is the following: One player is assigned to
one type, and the two others coordinate on the remaining
three types by means of a Bell state pair, just as in the two-
observatories, three-types scenario. This leads to a payoff of

s+(57/256)ε2 +(9/256)ε3,

which is again strictly higher than the best payoff in the clas-
sical case.

More generally, for this family of scenarios we conjecture
that a quantum advantage exists just in case the number of
types is strictly higher than the number of players. Our exam-
ples above assumed independent distributions of types across
observatories, but we conjecture that the quantum advantage
also carries over to scenarios with exchangeable distributions.
In this regard, we note that exchangeability puts a lower bound
on the negative correlation possible across pairs of states.

IV. DISCUSSION

Space systems are in many ways the ideal application do-
main for wide-scale quantum state distribution, since different
elements are typically at great distance from each other, mak-
ing rapid communication impossible.

Moreover, quantum signals can travel undisturbed in the
void of space. Wide-area distribution of entangled quantum
states from space was demonstrated in the QUESS experi-
ment, which successfully established a quantum link across
distant Earth-based locations17,18.

While coordination via sharing a quantum state is limited
by the no-signaling principle19, it nevertheless enables pat-
terns of activity that are not available classically. We have

demonstrated analytically the existence of a quantum advan-
tage in a few abstract scenarios. In many other scenarios that
are not analytically tractable, a quantum advantage may also
exist.

In the sample scenarios we presented, a quantum advan-
tage can already be obtained by distributing simple Bell pairs.
It may be even more desirable to make use of more general
multi-party entangled states such the GHZ state20. However,
relative to other types of entangled states, Bell state pairs
would seem to be among the easiest to generate and distribute
in space-based applications.
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