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“We are all agreed that your theory is crazy.  The question that divides 
us is whether it is crazy enough to have a chance of being correct.” 

— Niels Bohr
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The Classical Agreement Theorem 

Alice and Bob possess a common prior probability distribution on a state space 

They each then receive different private information about the true state  

They form their conditional (posterior) probabilities  and  of an underlying 
event of interest 

Theorem (Aumann, 1976): If these two values  and  are common knowledge 
between Alice and Bob, they must be equal 

Here, an event  is common knowledge between Alice and Bob if they both 
know it, both know they both know it, and so on indefinitely

qA qB

qA qB

E

R. Aumann, “Agreeing to Disagree,” Annals of Statistics, 4, 1976, 1236-1239
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Applications 

The agreement theorem is considered a basic requirement in classical epistemics 

It has been used to 

show that two risk-neutral agents, starting from a common prior, cannot 
agree to bet with each other 
(Sebenius and Geanakoplos, 1983) 

prove “no-trade” theorems for efficient markets 
(Milgrom and Stokey, 1982) 

establish epistemic conditions for Nash equilibrium 
(Aumann and Brandenburger, 1995)

J. Sebenius and J. Geanakoplos. “Don’t Bet on It: Con:ngent Agreements with Asymmetric Informa:on, Journal of the American 
Sta2s2cal Associa2on, 78, 1983, 424-426; P. Milgrom and N. Stokey, “Informa:on, Trade, and Common Knowledge,” Journal of 
Economic Theory, 26, 1982, 17–27; R. Aumann and A. Brandenburger, “Epistemic Condi:ons for Nash Equilibrium,” Econometrica, 
63, 1995, 1161–1180



5J. Geanakoplos and H. Polemarchakis, “We Can’t Disagree Forever,” Journal of Economic Theory, 
28, 1982, 192–200; this variant is due to John Geanakoplos (private communica:on)
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Non-Classical Settings I 

What is the status of the Agreement Theorem when classical probability theory 
does not apply? 

In the physical domain, the canonical case is quantum mechanics, where a 
fundamental result (Bell’s Theorem, 1964) says that no “local hidden-variable” 
theory can model the results of all quantum experiments 

As we will see, this implies that the classical Bayesian model does not apply 

In probability theory, there is a finite analog to the de Finetti representation 
theorem for infinite sequences of exchangeable random variables, if mixing is 
via a signed probability measure (Jaynes, 1986; Kearns and Székely, 2006; 
Janson, Konstantopoulos, and Yuan, 2016) 

This permits an exchangeability derivation of Fermi-Dirac statistics, paralleling 
an infinite exchangeability derivation of Bose-Einstein statistics (Kearns and 
Székely, 2006; Bach, Blank, and Francke, 1985)

J. Bell, “On the Einstein Podolsky Rosen Paradox," Physics, 1, 1964, 195-200; A. Bach, H. Blank, and H. Francke, “Bose-Einstein Sta:s:cs 
Derived from the Sta:s:cs of Classical Par:cles,” Le9ere al Nuovo Cimento, 43, 1985, 195-198; E. Jaynes, “Some Applica:ons and Extensions 
of the de Finef Representa:on Theorem,” in P. Goal and A. Zellner (eds.), Bayesian Inference and Decision Techniques: Essays in Honor of 
Bruno de FineE, North-Holland, 1986, 31; G. Kearns and G. Székely, “De Finef’s Theorem for Abstract Finite Exchangeable Sequences,” 
Journal of Theore2cal Probability, 19, 2006, 589-608; S. Janson, T. Konstantopoulos, and L. Yuan, “On a Representa:on Theorem for Finitely 
Exchangeable Random Vectors,” Journal of Mathema2cal Analysis and Applica2ons, 442, 2016, 703-714 



7

Non-Classical Settings II 

In decision theory, Perea (2022) axiomatizes expected utility theory for 
conditional preference relations, which assign to every possible probabilistic 
belief on a set of states, a preference relation over the decision maker’s set of 
actions 

The motivation is that, in a game, we typically fix a player’s utility function but 
not beliefs — what, then, does the utility function represent? 

The interest is in axiomatizing expected utility for unsigned probability 
measures, but, for the axioms to bite, one must allow the decision maker to 
holds signed probability measures on the states 

For decision making under ambiguity, Ke and Zhao (2022) include an axiom 
system on preferences that is representable by maxmin expected utility (as in 
Gilboa and Schmeidler, 1989) where the minimization is over sets of signed 
probability measures

A. Perea, “Expected U:lity as an Expression of Linear Preference Intensity,” working paper, Maastricht University, May 2022; 
S. Ke and C. Zhao, “From Local U:lity to Neural Networks,” December 2022, at hnps://sites.google.com/site/shaoweike/
research; I. Gilboa and D. Schmeidler, “Maxmin Expected U:lity with Non-Unique Prior,” Journal of Mathema2cal Economics, 
18, 1989, 141-153



8

Empirical model:

Bell model:

Quantum Theory: 2 x 2 x 2 Boxes

(a′ , b)
(a, b)

(a, b′ )
(a′ , b′ )

(0, 0) (1, 0) (0, 1) (1, 1)
f1 f2 f3 f4
f5 f6 f7 f8
f9 f10 f11 f12

f13 f14 f15 f16

(a′ , b)
(a, b)

(a, b′ )
(a′ , b′ )

(0, 0) (1, 0) (0, 1) (1, 1)
1/2 0 0 1/2
3/8 1/8 1/8 3/8
3/8 1/8 1/8 3/8
1/8 3/8 3/8 1/8
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Phase-Space Representation

(a′ , b)
(a, b)

(a, b′ )
(a′ , b′ )

(0, 0) (1, 0) (0, 1) (1, 1)
f1 f2 f3 f4
f5 f6 f7 f8
f9 f10 f11 f12

f13 f14 f15 f16

a a′ b b′ 

p0
p1

p2

p3
p4
p5

p6

p9

p7

p8

p10
p11

p12

p15

p13

p14

0 0 0 0
0 0 0 1
0 0 1 0
0 0 1 1
0 1 0 0
0 1 0 1
0 1 1 0
0 1 1 1
1 0 0 0
1 0 0 1
1 0 1 0
1 0 1 1
1 1 0 0
1 1 0 1
1 1 1 0
1 1 1 1
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An Impossibility Result 

From phase space and the Bell empirical model, we can calculate 

 

Adding the second, third, and fourth equations gives 

 

which contradicts the first equation 

Theorem (Abramsky and Brandenburger, 2011): An empirical model is “no 
signaling” if and only if there is a phase-space model with a signed probability 
measure that induces it

p0 + p1 + p4 + p5 = 1/2
p4 + p5 + p12 + p13 = 1/8

p1 + p3 + p5 + p7 = 1/8
p0 + p2 + p8 + p10 = 1/8

p0 + p1 + p2 + p3 + p4 + 2p5 + p7 + p8 + p10 + p12 + p13 = 3/8

S. Abramsky and A. Brandenburger, “The Sheaf-Theoretic Structure of Non-Locality and Contextuality,” New Journal 
of Physics, 13, 2011, 113036
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General Set-up 

There is a finite abstract state space  

Alice and Bob have partitions  and  of  representing their private 
information         

There is a common — possibly signed — prior probability measure  on  

Observability: 

Assume throughout that all members of the partitions  and  receive 
probability in the interval  

Assume, too, that all events of interest receive probability in 

Ω

𝒫A 𝒫B Ω

p Ω

𝒫A 𝒫B
(0,1]

(0,1]
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A Warm-Up Example 

Alice’s (Bob’s) partition is red (blue) 

The event of interest is 
 

The true state is  

At , Alice assigns (conditional) 
probability  to     

At , Bob assigns (conditional) 
probability  to  

The event that Bob assigns probability 
0 to  is 

 

At , Alice assigns probability  to  

Call this singular disagreement 

It is impossible classically!

E = {ω1, ω3, ω4}
ω1

ω1
1 E

ω1
0 E

E
F = {ω1, ω2, ω3}

ω1 1 F

●

●

●

●

(−1/4)

(+1/4)

(+1/2)

(+1/2)

ω1

ω3

ω2

ω4

Note: All partition cells and  receive 
probability in  and are therefore 
observable

E
(0,1]
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From Knowledge to Certainty 

Definition: Alice knows an event  at state  if  

Definition: Alice is certain of an event  at a state  if  

Fix an event  and probabilities  and , and let 

for all  

Definition: It is common certainty at a state  that Alice assigns probability  
to  and Bob assigns probability  to  if  

E ω 𝒫A(ω) ⊆ E

E ω p(E |𝒫A(ω)) = 1

E qA qB

n ≥ 0

ω* qA
E qB E ω* ∈ ∩∞

n=0 An ∩ ∩∞
n=0Bn

A0 = {ω ∈ Ω : p(E ∣ 𝒫A(ω)) = qA}
B0 = {ω ∈ Ω : p(E ∣ 𝒫B(ω)) = qB}

An+1 = An ∩ {ω ∈ Ω : p(Bn ∣ 𝒫A(ω)) = 1}
Bn+1 = Bn ∩ {ω ∈ Ω : p(An ∣ 𝒫B(ω)) = 1}
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Relationship Between Knowledge and Certainty 

If Alice knows an event  at state , then she is certain of  at  

It is also true that common knowledge of  implies common certainty of  

(Proof: If Alice knows Bob knows , then she knows Bob is certain of , since 
knowledge is monotonic.  From this, Alice is certain Bob is certain of .  The 
argument continues to higher levels.) 

Arguably, the distinction between these modalities is “small” in the classical 
domain (arguably, not!) 

Also, in the classical domain, there is an Agreement Theorem for common 
certainty 

Theorem (classical): Fix a (non-negative) common prior and an event .  
Suppose at a state  it is common certainty that Alice’s probability of  is  
and Bob’s probability of  is .  Then . 

But what happens in the non-classical world?

E ω E ω

E E

E E
E

E
ω* E qA

E qB qA = qB
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Non-Classical Agreement with Knowledge 

Even without our observability conditions, we get a non-classical analog to the 
classical Agreement Theorem 

Theorem (non-classical): Fix a signed common prior and an event .  Suppose at 
a state  it is common knowledge that Alice’s probability of  is  and Bob’s 
probability of  is .  Then . 

Proof: Follow closely the classical argument.  Consider the (equal) conditional 
probabilities  for Alice, calculated for members of her partition that are 
contained in the member of the meet .  This time, we take an 
affine rather than convex combination of this constant probability to get 

.  Then run the same argument for Bob. 

But let’s see what happens with common certainty …

E
ω* E qA

E qB qA = qB

qA
(𝒫A ∧ 𝒫B)(ω*)

p(E | (𝒫A ∧ 𝒫B)(ω*)) = qA

https://www.xixilogic.org/events/wp-content/uploads/2022/05/lfdsn2019-proceedings.pdf; see also M. Leifer and C. Duarte, 
“Generalizing Aumann’s Agreement Theorem,” 2022, at https://arxiv.org/abs/2202.02156



Common Certainty of Disagreement 

The event of interest is 

 

The true state is  

At , it is common certainty that Alice assigns probability  to  while 
Bob assigns probability  to  

That is, there is common certainty of disagreement!

E = {ω2, ω4, ω5, ω6}
ω5

ω5 1 − 2ϵ E
1 − 2η E
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● ●

● ●

●

●

 and  are small with ϵ η ϵ ≠ η

ω1

(+ϵ)

(+1/2)

ω2

(−ϵ)

ω5

(+1/2)

ω6

ω3

(+η)

(−η)
ω4



Communication I 

Suppose the true state is  

Alice announces a probability of  (à la Geanakoplos and Polemarchakis, 
1982) 

Bob infers that Alice observed  and calculates an updated 
probability of !

ω1

1 − 2ϵ

{ω1, ω2, ω5}
−ϵ/0

17

● ●
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●ω1

(+ϵ)

(+1/2)

ω2

(−ϵ)

ω5

(+1/2)

ω6

ω3

(+η)

(−η)
ω4
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Communication II 

In systems where the agents are able to communicate about an event of 
interest, those communications should lead to well-defined and classical 
conditional probabilities regarding that event 

That is, the resulting conditional probabilities should all lie in the interval  

Communication — even if it concerns a non-classical system — should be 
considered observable and therefore classical 

We next introduce conditions that ensure this is the case (but we go in a 
different direction from the Geanakoplos-Polemarchakis protocol)

[0,1]
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Communication-Enabled Structures 

Define a sequence of partitions for Alice, corresponding to announcements she 
could make about her probability of , her certainty of Bob’s probability, etc., 
and likewise for Bob 

 

 

For any , say  is regular with respect to  if  and 
 

A structure  is communication-enabled with respect to  if 
for each , each  and each  is regular with 

respect to  

Note: This property fails in the previous example

E

ℳ(n)
A = {An, Ac

n}

ℳ(n)
B = {Bn, Bc

n}

π, E ⊆ Ω π E p(π) ≥ 0
0 ≤ p(π ∩ E) ≤ p(π)

(Ω, p, 𝒫A, 𝒫B) E
n ≥ 0 π ∈ 𝒫A ∨ ℳ(n)

B π ∈ 𝒫B ∨ ℳ(n)
A

E
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A New Agreement Theorem 

Theorem: Fix a structure that is communication-enabled with respect to     
and suppose at a state  it is common certainty that Alice’s probability of     
is  and Bob’s probability of  is . Then .            

Notice that Alice’s potential announcements are made relative to her (initial) 
partition ; and likewise for Bob 

In words, the mere ability to “confirm” the epistemic state (here, the state is 
common certainty of the posteriors) is enough to rule out disagreement — the 
confirmation need not actually be carried out

E
ω* E

qA E qB qA = qB

𝒫A
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Realizability of Common Certainty of Disagreement? 

In the physical domain, it can be shown that common certainty of disagreement 
(CCD) is impossible when observing quantum systems but possible for 
“superquantum” (no-signaling) systems 

The impossibility of CCD can therefore be proposed as a physical axiom 

In decision theory, if we equip agents with signed probability measures, it seems 
we can get highly non-classical behavior, such as betting between risk-neutral 
agents 

Or, should the impossibility of CCD be elevated to an (epistemic) decision-
theoretic principle? 

If yes, what non-classical behavior is then allowed?  This appears to be an open 
direction …

P. Contreras-Tejada, G. Scarpa, A. Kubicki, A. Brandenburger, and P. La Mura, “Observers of Quantum Systems Cannot 
Agree to Disagree,” Nature Communications, 12, 2021, at https://doi.org/10.1038/ s41467-021-27134-6



22

Two Alternative Models 

1. Khrennikov and Basieva (2014) and Khrennikov (2015) consider quantum-like 
observers of a quantum system who employ either the knowledge or certainty 
modality 

This approach allows CCD even for quantum systems 

2. (With thanks to Miklós Pintér) We could strengthen the belief modality to say: 

Alice is fully certain of  if all events in the complement of  receive 
probability  

We could investigate this avenue by developing a preference-based definition 
of certainty (analogous to defining Savage-null events) from a decision theory 
with signed probabilities 

This appears to be an interesting open direction

E E
0

A. Khrennikov and I. Basieva, “Possibility to Agree on Disagree from Quantum Information and Decision Making,” Journal of 
Mathematical Psychology, 62, 2014, 1-5; A. Khrennikov, “Quantum Version of Aumann’s Approach to Common Knowledge: 
Sufficient Conditions of Impossibility to Agree on Disagree,” Journal of Mathematical Economics, 60, 2015, 89-104
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