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Inspired by the bargaining procedure of Shapley (1953), Branden-
burger and Nalebuff (2023) introduced a novel procedure in which
the marginal contribution of the player joining a coalition is split
in proportion α: 1− α between that player and the members of the
coalition being joined. This α-procedure was shown to lead to the
Shapley value. Here we demonstrate that our α-procedure is the
unique generalized procedure that does so under a priority and a
monotonicity axiom.
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In Shapley’s (1953) procedure, a player joining an existing coalition keeps all
of its marginal contribution. In our procedure, the player joining the existing
coalition shares the gains with the members of the coalition in the proportion
α: 1 − α. In Brandenburger and Nalebuff (2023), we demonstrated that the α-
procedure also leads to the Shapley value. Here we show that our α-procedure is
the unique generalized procedure that does so under a priority and a monotonicity
axiom.

There are two parts to the α-procedure. The first is the α: 1− α split between
the joining player and the existing players. The second part is the mechanism
for how the 1 − α share is divided up among members of the existing coalition.
An obvious approach would be to divide this share equally. However, such a
division would not reflect the differing bargaining positions of the members of
the coalition. Even a dummy player, one that adds no value, would get the
same amount as all the other members. Our approach divides the 1− α share in
stages. Each member has a claim equal to their marginal contribution, where the
marginal contribution is to the expanded set consisting of the existing members
and the joining player. We begin with equal division, but only up to the smallest
claim among the members sharing the gains. After that point, the member with
the smallest claim no longer shares in the division. We divide the remaining
share equally among the remaining members, but only up to the second-smallest
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claim. And so on. Finally, if no member of the existing coalition has a claim to
the full 1 − α share, the residual reverts to the joining player. We call this the
α-procedure, defined more formally in Equation (2) below.

Fix a player set N . For each subset S ⊆ N , there is a real number v(S) which
is the value created by the players in S. We choose the normalization v(i) = 0
for all i, and we assume that v is super-additive; that is, if S ∩ T = ∅, then
v(S ∪ T ) ≥ v(S) + v(T ).

Let the coalition S without player i ∈ S be denoted by S\i. Denote the marginal
contribution of a player i in S to coalition S by mi(S) = v(S)−v(S\i). By super-
additivity, mi(S) ≥ 0. Let the number of players in coalition S be denoted by
|S|. We adopt the following labeling convention: for each coalition S, order the
players according to their marginal contributions to S, so that m1(S) ≤ m2(S) ≤
· · · ≤ m|S|(S). If two players have equal marginal contributions, then order them
arbitrarily. Note that this ordering will generally be different across different
coalitions S. To reduce notion, we often refer to mi(S) by mi when the meaning
is clear.

In our procedure, like the Shapley procedure, players join existing coalitions
in a random order. Unlike the Shapley procedure, the gains are split α: 1 − α
between the joiner and the existing coalition members, where 0 ≤ α ≤ 1. Instead
of summing up across all |N |! possible orderings, we focus on the |S| possible
orderings for the last step in how set S can be formed.

In the Shapley procedure, each player i ∈ S receives mi(S) when joining S\i
and receives zero in the other |S − 1| cases where a player k ∈ S\i, joins i in
S\k. On average, player i receives mi(S)/|S|. In our procedure, each player i ∈ S
receives αmi(S) when joining S\i and receives a share of (1 − α)mk(S) when
player k joins S\k.
It remains to specify the division of the amount (1 − α)mi among the |S| − 1

players in S\i. We divide the (1 − α)mi value equally among the players who
have a claim to it. To be precise, player i’s marginal contribution mi is divided
into i intervals (0,m1], (m1,m2], . . . , (mi−1,mi]. The kth interval mk −mk−1 is
then divided equally among the players with mj ≥ mk. There are |S| − k players
who have a claim to that interval. Thus, player j ∈ S\i gets its share on each
interval up to the smaller of its maximum claim mj and the total amount mi to
go around. Formally, player j receives:

(1) (1− α)

min(i,j)∑
k=1

mk −mk−1

|S| − k
.

In the first term of the sum, we introduced a fictitious player 0 who is not a
member of any coalition, and we set m0(S) = 0 for all S. This is done to simplify
the notation.

Start with player 1, the player with the lowest marginal contribution. This
player gets (1−α)m1/(|S|−1|) no matter who the outside player is. This exhausts
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player 1’s claim, and the remaining value is split among one fewer players. Player 2
gets the same (1 − α)m1/(|S| − 1) as player 1 plus an additional (1 − α)(m2 −
m1)/(|S| − 2) when the joiner is anyone other than player 1. Here, the amount
m2−m1 is divided equally among the |S|−2 players whose marginal contributions
exceed m1. This procedure continues for all subsequent players in S\i.
When the joining player is i = |S|, the procedure works just as before, except

that none of the players j ∈ S\|S| have a claim on the final interval of value
m|S| −m|S|−1. This amount therefore reverts to player |S|. We can see this last
step in equation (1), since for any player j ∈ S\|S|, we have min(|S|, j) = j < |S|
and so the interval m|S| −m|S|−1 does not appear in the sum for any player j.

The players in S\i have “priority” over the amount (1 − α)mi. These players
receive this full amount except when i = |S|, in which case there is a final interval
of value that reverts to i. Putting everything together, our procedure specifies
that when player i joins the coalition S\i, player j gets a payoff πj|i given by:

(2) πj|i(S) =


αmj for i = j < |S|;
αm|S| + (1− α)(m|S| −m|S|−1) for i = j = |S|;

(1− α)

min(i,j)∑
k=1

mk −mk−1

|S| − k
for i ̸= j.

We called this the α-procedure. A feature of this procedure is that no player
gets more than its marginal contribution to a coalition. In particular, a dummy
player gets zero.

Here we want to define a more general weighting system which includes the
α-procedure as a special case. Let weights wjk(S\i) ≥ 0 determine each player j’s
share of the kth interval of (1− α)mi. We set wjk(S\i) = 0 for k > i, since there
are only i intervals.

Since these are weights, we have

(3)
∑
j∈S

wjk(S\i) = 1.

Summing over intervals, we find that each of the players j ∈ S\i being joined
receives

(4) (1− α)
i∑

k=1

wjk(S\i)(mk −mk−1),

and player i receives

(5) αmi + (1− α)

i∑
k=1

wik(S\i)(mk −mk−1).
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Our first axiom is Priority, which gives the players in S\i precedence in dividing
up the (1− α)mi. The very nature of the α: 1− α division is that the players in
the coalition being joined should be the ones exclusively sharing the (1 − α)mi.
The one case in which the players being joined do not receive this full amount is
when the largest marginal contribution among players in S\i falls short of mi.
In that case, none of players in S\i have a claim on the full amount of mi. This
arises only when the joining party is |S|, the player with the highest marginal
contribution. In this exceptional case, the joining party has a unique claim on
the final interval, m|S|(S)−m|S|−1(S).

Priority Axiom: The weights wik(S\i) = 0 for all i, k except when
i = k = |S|.

We also assume that players in S\i with larger marginal contributions get at
least as much of each interval as do players with smaller marginal contributions:

Monotonicity Axiom: The weights wjk(S\i) are weakly increasing
in j ∈ S\i.

In our α-procedure, the weights, which we write as wα
jk(S\i), are given by

(6) wα
jk(S\i) =


1

|S| − k
for j ̸= i, k ≤ min(i, j);

1 for i = j = k = |S|;
0 otherwise.

These weights satisfy the Priority and Monotonicity axioms.

THEOREM 1: Under Priority and Monotonicity, the unique weights that lead
to the Shapley value are the wα

jk(S\i) weights.

PROOF: Consider a set S with |S| ≥ 3.1 We calculate the expected payoff to
player j ∈ S as S goes from size |S| − 1 to |S|. Either j is on the outside and
joins S\j, or j is on the inside and shares in the gains as the set grows from S\i
to S.

When player i joins S\i, player j receives

(7) (1− α)
i∑

k=1

wjk(S\i)(mk −mk−1).

1The cases of |S| = 1 and |S| = 2 do not require any allocation across the players in S\i. If |S| = 1,
there is no one else to share the total value. If |S| = 2, there is only one player inside S\j and thus no
allocation problem among the players being joined: w11(S\2) = w21(S\1) = 1. Note also in this case
that m1(S) = m2(S), so that there is only one relevant interval.
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The overall expected gain to player j is thus

(8)
1

|S|

[
αmj +

∑
i∈S

(1− α)
i∑

k=1

wjk(S\i)(mk −mk−1)

]
.

The Shapley value payoff for j is a specific function that depends only on
player j’s marginal contributions; see Young (1985). Therefore, a necessary and
sufficient condition for a generalized weighting system to result in the Shapley
value is for all j ∈ S,

(9) αmj +
∑
i∈S

(1− α)
i∑

k=1

wjk(S\i)(mk −mk−1) = mj .

Since the weights are independent of α, we can assume α < 1. Thus, equa-
tion (9) implies

(10)
∑
i∈S

i∑
k=1

wjk(S\i)(mk −mk−1) = mj .

It remains to show there is a unique set of non-negative weights that satisfy
Priority, Monotonicity, and equation (10).

We can rewrite equation (10) as

(11)

|S|∑
k=1

mk

 |S|∑
i=k

wjk(S\i)−
|S|∑

i=k+1

wjk+1(S\i)

 = mj .

Since only mj appears on the right-hand side, the terms multiplying mk must
be 0 except for k = j, when the term must be 1. This implies:

(12)

|S|∑
i=k

wjk(S\i) =
|S|∑

i=k+1

wjk+1(S\i) for k ̸= j,

and

(13)

|S|∑
i=j

wjj(S\i) =
|S|∑

i=j+1

wjj+1(S\i) + 1.

A recursive argument leads to the simplification of equations (A6) and (A7).
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First note that for k = |S|,

(14)

|S|∑
i=|S|

wj|S|(S\i) = 0 for j < |S|

since the right-hand side of equation (12) has no terms in this case. Since the
sum in equation (14) is 0 and each term is non-negative, each term must be 0:
wj|S|(S\i) = 0 for j < |S|.
Next consider k = |S| − 1. For j < |S| − 1,

(15)

|S|∑
i=|S|−1

wj|S|−1(S\i) =
|S|∑

i=|S|

wj|S|(S\i) = 0,

where the first equality follows from equation (12) and the second from equa-
tion (14). Furthermore, each term wj|S|−1(S\i) = 0, since the sum is 0 and each
term is non-negative.
Each time the right-hand side of equation (12) is 0, we use this to show that

the left-hand side must be 0 and thus each term must also be 0 for one lower
value of k. This continues until k = j + 1. The result is Lemma 1.

LEMMA 1: wjk(S\i) = 0 for j < k.

For k = j, we have from equation (13) and Lemma 1,

(16)

|S|∑
i=j

wjj(S\i) =
|S|∑

i=j+1

wjj+1(S\i) + 1 = 0 + 1 = 1.

For k < j, we return to the recursion argument starting with equations (12)
and (13), only now the sum is 1 instead of 0. Starting at k = j − 1,

(17)

|S|∑
i=k

wjk(S\i) =
|S|∑

i=k+1

wjk+1(S\i) = 1,

where the right-hand side is 1 by equation (16). Continuing the recursion leads
to

(18)

|S|∑
i=k

wjk(S\i) = 1 for all k ≤ j.

For k = j = |S|, this implies

(19) w|S||S|(S\|S|) = 1.
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For all other cases with k ≤ j, we have wjk(S\j) = 0 by Priority. Thus, we can
rewrite equation (18) as

(20)

|S|∑
i=k,i̸=j

wjk(S\i) = 1 for k ≤ j < |S| and k < j = |S|.

In the case of j = k, this simplifies to

(21)

|S|∑
i=k+1

wkk(S\i) = 1.

Up to this point, we have focused on the constraints that follow from the Shapley
value calculation. We can also use the fact that the w’s are weights to write

(22)
∑
j∈S

wjk(S\i) = 1 for k ≤ i.

We exclude the cases with k > i, because wjk(S\i) = 0 by definition.

We previously established (Lemma 1) that wjk(S\i) = 0 for j < k. By Priority,
wjk(S\j) = 0 except for j = k = |S|. Therefore, equation (22) implies

(23)

|S|∑
j=k,j ̸=i

wjk(S\i) = 1 for k < i.

By Monotonicity, wkk(S\i) ≤ wjk(S\i) for k ≤ j, j ̸= i, and therefore

(24) (|S| − k)wkk(S\i) ≤
|S|∑

j=k,j ̸=i

wjk(S\i) = 1 for k < i.

This implies

(25) wkk(S\i) ≤
1

|S| − k
for k < i.

If wkk(S\i) < 1/(|S| − k) for some k < i, then

(26)

|S|∑
i=k+1

wkk(S\i) < 1,
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which violates the Shapley value constraint in equation (21). Therefore, we have

(27) wkk(S\i) =
1

|S| − k
for k < i.

By Monotonicity, wkk(S\i) ≤ wjk(S\i) for j ≥ k, j ̸= i. Thus, equation (27)
implies:

(28) wjk(S\i) ≥ wkk(S\i) =
1

|S| − k
for j ̸= i, k ≤ min(i− 1, j).

This, in turn, implies

(29) wjk(S\i) =
1

|S| − k
for j ̸= i, k ≤ min(i− 1, j),

since otherwise the sum in equation (23) would be strictly greater than 1.
At this point, the proof is nearly complete. All that is missing is the case where

k = min(i, j) = i, j ̸= i, which simplifies to k = i < j. To solve for this case, we
return to equation (20) and substitute in the value wjk(S\i) from equation (29)
for all but the first term in the sum. This leads to

(30) wjk(S\k) +
|S| − k − 1

|S| − k
= 1 for k < j.

Collecting terms, this implies

(31) wjk(S\k) =
1

|S| − k
for k < j.

Therefore

(32) wjk(S\i) =
1

|S| − k
for j ̸= i, k ≤ min(i, j).

Putting this together with equation (19) and Lemma 1, we obtain

(33) wjk(S\i) =


1

|S| − k
for j ̸= i, k ≤ min(i, j);

1 for i = j = k = |S|;
0 otherwise.

as required. ■
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