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Abstract 

 This is an extension of “Reevaluating the Shapley Value: A New 
Justification and Extension” to include the NTU case. All the notation and 
setup are in our earlier paper. 

  

We show how our -procedure can be used to define an NTU game. For , this 
problem has been addressed in Hart and Mas-Colell (1996), who provide a procedure 
that yields the consistent Shapley value (Maschler and Owen, 1989, 1992). When 

, a new procedure is required, just as in the TU case, since we need a rule to 
share the  portion of value. We do this by defining the NTU marginal contribution 
of a player to a set , which leads to our generalized procedure. 

Given an NTU game , we assume that the feasible sets  satisfy the standard 
conditions on the characteristic function; see, in particular, conditions (A.1)–(A.3) in Hart 
and Mas-Colell (1996). Let  denote the boundary of the feasible set for . For 
convenience, we perform two normalizations. We set . We also scale the 
utilities for all players so that the maximum feasible utility level of each player  in  
is 1. 

We begin with the case where  is a hyperplane (therefore, the unit simplex under 
our scaling) and then show how to extend our analysis to the general convex case as in 
Maschler and Owen (1989, 1992). Let  denote the vector of payoffs from the 
procedure. By our normalization  for one-player games. 

Assume inductively that we have a solution for coalitions of size up to  (for any 
characteristic function). Fix a game . We derive the solution for the set . The 
marginal contributions associated with  are 
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This is the maximal possible payoff to  given that the other players obtain their payoffs 
in the game without .  1

With our set of marginal contributions, and following our earlier numbering convention, 
we index the players in order of increasing marginal contribution. The inductive step in 
our NTU procedure is obtained by adapting our earlier TU game. 

From the set  we randomly select a player to be at risk. Given player  is at risk, we 
assign the probability  of player  being the proposer as in Brandenburger and 
Nalebuff (2023), Equation (2), substituting the  for the , and then dividing by 

.  

     

In that way, the parameter  enters into the procedure. 

The procedure (contingent on the random selection of  and ) assigns everyone their 
value in , with the proposer  receiving an additional .  Because  is a 2

hyperplane (normalized to the unit simplex), it is always efficient and feasible to assign 
 to the player making the proposal. The payoffs  are the expected values 

where each player has an equal chance of being at risk,  
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 This defini+on is different from that in Hart and Mas-Colell (1996) in two ways. First, the marginal contribu+ons 1

defined in Equa+on (B1) are independent of the order of player arrival. Second, outside of a hyperplane game, the 
solu+on to the subgame  need not be the average marginal contribu+on of each player in that game. In 
Hart and Mas-Colell, the marginal contribu+ons are defined induc+vely based on a specific ordering of player 
arrivals. For a hyperplane game—one in which , for , is a half space—our  equal the average 
value of the Hart and Mas-Colell marginal contribu+ons across all  possible orderings that build to  in 
which player  is the last to join. 
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and where  is the th unit vector. Again, because  is a hyperplane, this 
expected value is both efficient and feasible. 

Moreover, the same argument as in Equation (3) in the proof of Theorem 1 of 
Brandenburger and Nalebuff (2023) shows 

  .                                                                (4) 

Thus 

                                                         (4) 

where  is the vector of the . We can see that this procedural solution is the 
NTU analog to the Shapley recursion relationship. 

However, this is only the solution for the case where  is a hyperplane. To find the 
procedural solution for general , we look for a fixed point as in Maschler and 
Owen (1992). Start with a point  on the unit simplex. Consider the ray from the origin 
through . This ray will intersect  at some point . Let hyperplane  be 
tangent to  at . Normalize  so that it is the unit simplex, and apply the 
same scaling to . Consider the game when the scaled  is extended to . 
Here, the boundary is a hyperplane, so we can apply the solution for  from 
Equation (B4). This is a continuous mapping from the unit simplex to itself—from  to  
to —and thus has a fixed point. The fixed point is a tangency point and thus on 
the boundary of (the scaled) . At the fixed point, the solution for  is then 
defined as the consistent solution to the feasible set . The intuition for selecting 
the fixed point is similar to the axiom of Independence of Irrelevant Alternatives:  
is a solution for a larger set that includes  and it remains feasible in the smaller set 

, so it should be the solution in the smaller set. 

Observe that the inductive step has two parts. We start with  players and randomly 
break the set into  insiders and one “at-risk” player. We apply the procedure to 
a game with  players, and divide up the at-risk player’s contribution to obtain 
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the solution to a game with  players. This first step is done when the boundary for 
 is a hyperplane. We then use the solution to all such games to find a fixed point 

for general . This is similar to the way the Nash bargaining solution is constructed. 

We offer some remarks on our NTU procedure. First, if the game is TU, the procedure 
leads to the same result as our -procedure defined in Equations (1)–(2). Next, for two-
person games, our NTU procedure leads to the Nash (1950) bargaining solution for all 
values of . When the boundary of the bargaining set is a line, the NTU procedure 
selects the midpoint: . As in the Nash 
bargaining solution, the NTU procedure for convex sets selects the boundary point 
which is the midpoint of the tangent line at that boundary point. 

For , our procedure leads to the same consistent solution(s) as in Hart and Mas-
Colell.  Any consistent solution is based on the solution to a hyperplane game and our 3

procedures align in hyperplane games when . 
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